Beyond Naive RAG: Practical Advanced Methods

Hamel Husain Benjamin Clavié Nandan Thakur Orion Weller Antoine Chaffin Bryan Bischof Ayush Chaurasia Kelly Hong

2025-10-17

Table of contents

Pr	eface		1
	Abo	ut This Book	1
1	I Do	n't Use RAG, I Just Retrieve Documents	3
	1.1	The Title	4
	1.2	The "RAG is Dead" Controversy	6
	1.3	What is RAG Really?	8
	1.4	The Standard RAG Flow	9
	1.5	The Problem with "2023 RAG"	11
	1.6	Single-Vector Search Limitations	12
	1.7	Why Long Context Doesn't Replace RAG	13
	1.8	Retrieval is Essential	14
	1.9	Key Takeaways	15
	1.10	Better RAG is the Solution	17
	1.11	The Retrieval Landscape	18
		Expert Speakers Preview	20
		Video	24
2	Mod	lern IR Evaluation for RAG	25
	2.1	Introduction and Speaker Background	26
	2.2	The History of Information Retrieval	29
	2.3	The Cranfield Paradigm	32
	2.4	The BEIR Benchmark	34
	2.5	Problems with Current Benchmarks	36
	2.6	The RAG Era Changes Everything	40
	2.7	Different Users, Different Goals	42

AI Evals Course: 35% off at bit.ly/evals-ai

	2.8	The Evaluation Mismatch					
	2.9	Introducing FreshStack					
	2.10	FreshStack Data Sources					
		The FreshStack Pipeline					
		FreshStack Evaluation Metrics					
	2.13	Key Results and Findings					
		Chapter Reflections					
		Video					
3	Optimizing Retrieval with Reasoning Models 58						
	3.1	LLM Capabilities: Instruction Following and Reasoning 59					
	3.2	The Search Paradigm Hasn't Changed 62					
	3.3	Evolution of Search Paradigms					
	3.4	Understanding Instructions in IR					
	3.5	Introducing Promptriever and Rank1					
	3.6	Promptriever: Instruction-Trained Retrieval					
	3.7	Promptriever Evaluation Results					
	3.8	Rank1: Reasoning-Based Reranking					
	3.9	Rank1 Performance Results					
	3.10	Finding Novel Relevant Documents					
	3.11	Chapter Takeaways					
		Video					
4	Late	Interaction Models For RAG 86					
	4.1	Dense Vector Search Architecture					
	4.2	Why Dense Models Became Popular					
	4.3	The Benchmark Problem					
	4.4	Hidden Limitations					
	4.5	Long Context Performance					
	4.6	Complex Retrieval Tasks					
	4.7	BM25's Surprising Strength					
	4.8	The Pooling Problem					
	4.9	Late Interaction Solution					
	4 10	Performance Advantages 100					

AI Evals Course: 35% off at bit.ly/evals-ai

	4.11	Interpretability Benefits
	4.12	Barriers to Adoption
	4.13	PyLate: Making Late Interaction Accessible 106
		Future Research Directions
	4.15	Chapter Summary
	4.16	Video
5	RAG	with Multiple Representations 114
	5.1	The Map is Not the Territory
	5.2	Deconstructing RAG Buzzwords
	5.3	A First-Principles View of RAG
	5.4	The Three Responsibilities of an IR Engineer 123
	5.5	Practical Application: Curving Space
	5.6	Agents as Routers
	5.7	Dynamic Representations
	5.8	Demo: Semantic Dot Art
	5.9	System Architecture
	5.10	Integration with Other Techniques
	5.11	Chapter Principles
	5.12	Video
6	Cont	text Rot: When Long Context Windows Fail 138
	6.1	Introduction
	6.2	The Long Context Promise
	6.3	Limitations of Needle in a Haystack
	6.4	Experiment 1: Semantic vs. Lexical Matching 143
	6.5	Experiment 2: The Impact of Distractors
	6.6	Experiment 3: Context Structure Matters 150
	6.7	Experiment 4: Conversational Memory
	6.8	Experiment 5: Simple Tasks Aren't Immune
	6.9	Key Takeaways
	6.10	Practical Solutions: Context Engineering 155
		Further Resources
	6.12	Q&A Session

AI Evals Course: 35% off at bit.ly/evals-ai

Conclusion						
Key Takeaways	159					
Looking Forward	160					
Resources	160					

Preface

This book is a compilation of advanced talks on Retrieval Augmented Generation (RAG) that were part of our AI Evals course. The series features leading researchers and practitioners who share cutting-edge techniques for building production-ready RAG systems.

About This Book

This handbook condenses **over 6 hours of expert instruction** into annotated presentations that allow you to quickly learn advanced RAG techniques in under an hour. Each chapter is based on detailed presentations from world-class researchers who are pushing the boundaries of what's possible with retrieval systems.

The field of RAG is rapidly evolving beyond the simple "embed documents and search" paradigm that dominated 2023. This book presents six key areas where the field is advancing:

- 1. Why RAG Isn't Dead Understanding the evolution beyond naive single-vector search
- 2. **Modern Evaluation** New benchmarks and metrics for the RAG era
- 3. **Reasoning-Enhanced Retrieval** Incorporating instruction-following and reasoning into search
- 4. Late Interaction Models Moving beyond single vectors to token-level representations

- 5. **Multiple Representations** Building flexible systems with diverse data maps
- 6. **Context Rot** Understanding how LLM performance degrades with longer contexts

Each chapter combines theory with implementation guidance, code examples, and real-world applications. The presentations are annotated with timestamped references to the original videos, allowing you to dive deeper into specific topics that interest you most.

You can also view the web version of this series at hamel.dev/notes/llm/rag/not_dead.html.

If you want to learn more about AI Evals, check out our AI Evals course. Here is a 35% discount code for readers.

1 I Don't Use RAG, I Just Retrieve Documents

Based on a presentation by Benjamin Clavié

As part of our LLM Evals course, I hosted Benjamin Clavié to kick off a 6-part mini-series on evaluating and optimizing RAG. Ben is a retrieval researcher who has built widely used tools like RAGatouille and rerankers among other things. His talk focused on important developments in RAG and where you should be paying attention (late-interaction, reasoning, evals, multimodal, context engineering, etc.).

1.1 The Title

I don't use RAG, I just retrieve documents

Or How I Learned to Stop Worrying and Love Retrieving

Benjamin Clavié, 24-25 June 2025

(Timestamp: 00:00:00)

The cheeky title of the talk.

About me

- I'm based in Japan in Musashino City, a lovely part of Tokyo that's home to the Ghibli Museum.
- I do ML R&D at Answer.Al (and maybe somewhere else soon...), and I particularly enjoy NLP and '+ Retrieval'.+
- If you know me, it's likely because of X, where I'm this guy:

I call this **The Monopicture**. A singular picture of me taken 5 years ago which has gotten a life of its own as the only picture of me floating around.

 I've recently worked on ModernBERT, as well as some niceties related to ColBERT (more on that later!)

(Timestamp: 00:01:08)

Ben introduces himself, noting his base in Musashino City, Japan (home of the Ghibli Museum). He currently does ML R&D at Answer.AI. He jokes about his widely-circulated profile picture, which he dubs "The Monopicture," a single photo from five years ago that has taken on a life of its own. He also mentions his recent work on ModernBERT and niceties related to ColBERT, which he promises to discuss later.

1.2 The "RAG is Dead" Controversy

(Timestamp: 00:02:05)

Ben discusses the controversial idea that "RAG is dead." Ben explains that the statement only applies to a very narrow, and often misunderstood, definition of RAG that was popularized by marketing efforts.

RAG Is DEAD But Retrieval Is NOT

(Timestamp: 00:02:33)

The "RAG" that many people came to know in 2023: simplistic, single-vector semantic search approach may be obsolete. However, the underlying concept of **retrieval** is still relevant.

1.3 What is RAG Really?

RAG is... Wait, what's RAG?

Or what's in a name?

- RAG stands for Retrieval Augmented Generation
- In effect, it's a simple pipeline:
 - · Somehow Retrieve documents before

(Timestamp: 00:02:45)

Ben breaks down the acronym: Retrieval Augmented Generation. He points out that the original RAG paper actually described a process quite different from today's common interpretation, but the name stuck. At its core, the pipeline is simple: you **somehow** retrieve documents and pass them to a generative model to **augment** its output. He argues that there will always be a need to provide models with external information they weren't trained on.

1.4 The Standard RAG Flow

RAG Visualised

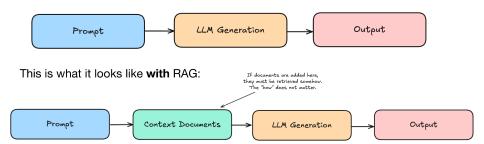
This is what a (simplified) LLM call looks like without RAG:

(Timestamp: 00:04:08)

This slide presents a standard, simplified LLM call: a prompt goes in, the LLM generates a response, and an output comes out. This is the baseline for understanding how RAG changes the process.

RAG Visualised

This is what a (simplified) LLM call looks like without RAG:



(Timestamp: 00:04:28)

With RAG, a new step is inserted: "Context Documents." Ben emphasizes that the "how" of retrieving these documents doesn't matter for the definition. If you've added external documents to the context window to augment the generation, you're doing RAG. Even manually copy-pasting text into a prompt is, technically, a form of RAG.

1.5 The Problem with "2023 RAG"

But is RAG not Dead?

I have it on good authority that it is because Claude Code doesn't use it

- The often repeated idea that **RAG** is **Dead** comes from **confusing definitions**
- In 2023 and a good chunk of 2024, there was a lot of marketing incentives to push confusing-but-catchy definitions
- What you might think of as **RAG** is actually the **most** naive possible approach to semantic search.
- Semantic search is only one of many retrieval tools, and basic single-vector semantic search is only one of its many forms.
- Claiming RAG is dead because we are adding other retrieval tools is akin to claiming HTML is dead because we are now using CSS.

(Timestamp: 00:05:10)

Ben addresses the common argument that since tools like Claude Code don't use "RAG," RAG must be dead. What people often call "RAG" is a naive brute force, single-vector semantic search. This definition was pushed heavily by marketing in 2023-2024 because it was simple to sell. Claiming RAG is dead because we're now using better retrieval tools is, in his words, "akin to claiming HTML is dead because we are now using CSS."

1.6 Single-Vector Search Limitations

Why is Single-Vector Semantic Search not Good Enough?

The real question is "how does one vector even work so well?"

- Single-vector semantic search, where you embed a whole document (or chunk) into just one vector, is inherently limited.
- It has to compress a whole document's worth of meaning into just a handful of dimensions.
- This leads to information loss, prioritising what the model assumes will be useful.
- This assumption will be informed by its training data (and things like tokenisation), which most likely does not look like your data.

(Timestamp: 00:06:46)

Ben explains the limitations of single-vector search. It must compress the meaning of an entire document or chunk into a single, relatively small vector (e.g., ~1000 dimensions). This compression inevitably leads to information loss. The model is trained to prioritize information it assumes will be useful for matching queries to documents based on its training data (like Bing search data), which most likely does not look like your specific, domain-heavy data (e.g., a unique codebase). This mismatch is why general-purpose embedding models often struggle with specialized domains like code retrieval.

1.7 Why Long Context Doesn't Replace RAG

But is RAG not Dead?

I heard that context windows are so big we'll never use RAG again

- Let's assume that we manage to solve all efficiency concerns around attention: 10M context windows are right around the corner. That'll surely do it, right? RAG is dead? No.
- Imagine someone in 1999 telling you that Hard Drives are Dead because they're releasing 512MB RAM sticks soon!
- Firstly, even 10M tokens is **remarkably little for many cases**: a lot of companies' knowledge bases are vastly larger than this, but, more importantly...
- RAG is the natural abstraction to provide a model with external information...

(Timestamp: 00:09:45)

Ben tackles the argument that massive context windows (e.g., Gemini's 1M or hypothetical 10M token windows) make RAG obsolete. He uses an analogy: it's like someone in 1999 claiming hard drives are dead because 512MB RAM sticks are coming soon. The reality is that even 10M tokens is a small amount of space for many enterprise knowledge bases or large datasets. Furthermore, the cost and inefficiency of stuffing everything into the context for every query makes it impractical.

1.8 Retrieval is Essential

RAG Lets Models Talk to The World

- Why did we and do we still need hard drives: because they can store arbitrarily large, continuously updated volumes of information.
- LLM weights are inherently frozen: the only way to add new information to them are complex training processes.
 - —> They do not know anything about Project X, Company Policy Y, super_cool_but_broken_script.py, or this really cool new fasthtml library you want to try!
 - And we wouldn't want them to! Space within weights is finite, and storing one-off information permanently is a waste of that space.
- Retrieval, and thus RAG, is the natural way to provide external information when it is needed.

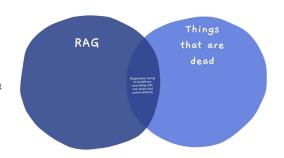
(Timestamp: 00:12:15)

Retrieval is never going away. LLM weights are frozen at a point in time. They don't know about your new internal project, your updated company policy, or that "really cool new fasthtml library you want to try." Training a model on every new piece of information is complex and inefficient. Ben argues we wouldn't want models to store all this one-off information permanently anyway; we want their finite weight space to be used for intelligence, not just knowledge storage. Retrieval is necessary to inject this external, up-to-date information.

1.9 Key Takeaways

tl;dr

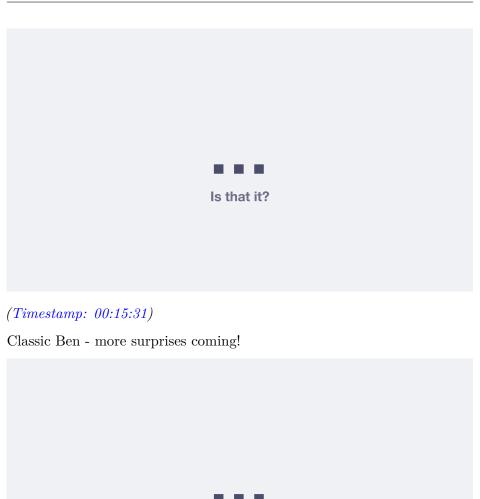
- · So, to sum up:
 - RAG isn't dead and will not die anytime soon.
 - Naive methods are showing limitations, encouraging us to use better ones.
 - RAG is needed because it's the best way to provide up-to-date information to models.
 - Long context windows will not kill BAG



(Timestamp: 00:14:32)

Ben summarizes takeaways so far: - RAG isn't going away. - Naive methods (like basic cosine similarity) are showing their limits, pushing us toward better, more sophisticated retrieval techniques. - RAG is the best way to provide models with up-to-date information. - Long context windows are not a replacement for retrieval.

The Venn diagram illustrates that what's "dead" is the oversimplified idea of brute-forcing everything with a single vector, not RAG generally.



Not quite.

(Timestamp: 00:15:52)

There is more to discuss re: better retrieval methods.

1.10 Better RAG is the Solution

Something did kill hard drives

- 512MB RAM sticks did not, in fact, kill hard drives.
- But something eventually did (as far as consumers are concerned)
- · Now, what is it that killed hard drives, if more RAM didn't?
- That's right, the SSD! But what exactly is an SSD?
- If you ask a normal person, the answer you'll likely get is:

 "Uh, they're like, better hard drives? they're faster or something?"
- It's exactly the same for RAG: what killed "2023 RAG" is better RAG

(Timestamp: 00:15:54)

Ben returns to his analogy. While more RAM didn't kill hard drives, SSDs did (for consumers). An SSD is just a "better hard drive." Similarly, what killed "2023 RAG" is simply **better RAG** (and concretely, better forms of retrieval).

1.11 The Retrieval Landscape

Have You Heard About the Many Facets of Retrieval?

The Dizzying Overview

- We've established that RAG is simply the act of Retrieving Context for a model, no matter how it is retrieved.
- · Retrieval takes many forms, all of them valid:
 - · grep is a retrieval tool
 - · wget is a retrieval tool
 - · agentic search is a smarter approach to retrieval
 - BM25 and keyword search are retrieval tools
 - · ColBERT and late-interaction are retrieval tools
 - · Web Search is a retrieval tool
 - Reasoning is a retrieval tool
 - · And yes, simple semantic search is also a retrieval tool
 - ٠ ...
 - All of these should be used when relevant, and preferably, they should be used together

(Timestamp: 00:17:03)

To showcase the breadth of retrieval, Ben lists a variety of tools: grep, wget, agentic search, BM25, Colbert, web search, and even reasoning. These are all valid retrieval methods. The best approach often involves using them in combination.

Have You Heard About the Many Facets of Retrieval?

Let's discuss a few

- Phew! That was a long list, and it doesn't even cover everything.
- The main thing to remember is that Retrieval is More Relevant Than Ever, it
 just doesn't look like what people used to try to sell you.
- Retrieval doesn't help itself: there's new approaches coming everyday, and
 everyone is telling you that the hot new thing is so much better using
 metrics and benchmarks you've never even heard of before.
- Don't worry! We've handpicked a few hot topics that some of my favourite people will tell you all about...

(Timestamp: 00:18:20)

Ben acknowledges the overwhelming landscape of retrieval techniques. It's no longer the simple, one-trick pony it was once marketed as. To help navigate this, he introduces the upcoming speakers who will cover specific "hot topics."

1.12 Expert Speakers Preview

All Retrieval Needs Evaluations

Nandan Thakur

- · Retrieval evaluations are difficult (ask Hamel and Shreya!)
- Building your own evals is necessary, but you can't try out all approaches
 - -> You need to have benchmarks you can trust to pick your candidate methods.
 - · High-quality benchmarks have historically been Academia's role.
- In the LLM era, many popular benchmarks, such as BEIR/MTEB, now give weaker signal: they are in the training set of all base models.
- ... However, there's no need to worry, academics are resourceful:
 Nandan Thakur, who led the design of BEIR, will tell you all about his new approaches for non-overfitted, trustable benchmarks.

(Timestamp: 00:19:34)

The first guest expert introduced is Nandan Thakur. With thousands of retrieval approaches available, trustworthy benchmarks are important. However, popular benchmarks like BEIR and MTEB are now part of the training data for all base models, leading to data contamination and giving a weaker signal. Nandan, who led the design of BEIR, will discuss his new approaches to creating non-overfitted, trustable benchmarks, such as the continuously updated FreshStack.

It'd be cool if retrievers could reason, someone should do that Orion Weller

- · Reasoning is all the rage nowadays.
- It's a form of increased test-time compute: we agree to spend more in exchange for better performance.
- This raises a question: how does retrieval fit in a world where models can ramble on about their thoughts?
- Orion Weller has been leading research onto this exact topic.

 Hear directly from him whether or not Retrievers can think, or even use the reasoning of other models

(Timestamp: 00:21:15)

Next up is Orion Weller, who researches the intersection of reasoning and retrieval. How does retrieval fit into a world where models can "ramble on about their thoughts"? Orion will explore whether retrievers can think or use the reasoning of other models to improve performance.

If single-vector retrieval is so bad, then what's good? Antoine Chaffin

- Someone on X (likely me) has probably tried to convince you to use "CoIBERT" or "CoIPali".
- These models are called late-interaction or multivector model
- ... odds are some of you aren't quite sure what they do, and you might be afraid to ask at this point.
- Short answer: They're very strong semantic search models, which mitigate a lot of the issues single-vector models have (with different tradeoffs!)
- Long answer: Antoine Chaffin, one of the leading experts in this space, will be telling you all about them and his work to make them dead(unlike RAG)-simple to use.

(Timestamp: 00:22:24)

Antoine Chaffin will discuss late-interaction and multi-vector models like ColBERT. These models address the information loss of single-vector methods by using a vector for each token. Antoine will explain how they work and introduce his work on ColPali to make these powerful models easy to use.

The French Have a Saying: The Best Soups Are Made In Old Pots Bryan Bischof and Ayush Chaurasia

- Data is inherently multi-modal: text is fun, but it's even more fun to find graphs and tables!
- Just like for text, there's a lot of new fancy semantic search techniques to retrieve multimodal documents...
- ... But the song remains the same: on their own, they still fall short!

• Join Ayush and Bryan as they tell you all about how they whipped up their best Multimodal Search recipe by learning from the **ANCIENT TOOLS**.

(Timestamp: 00:23:39)

The final talk features Bryan Bischof and Ayush Chaurasia on multimodal search. They'll explain that for multimodal data like graphs and tables, naive semantic search alone is insufficient. They will share how they created their best multimodal search recipe by combining modern techniques with "ancient tools."

That's all folks!

Thank you for coming:)
Be sure to attend the much more interesting upcoming sessions

(Timestamp: 00:24:54)

You can sign up for the series with the links above, or here: p2: Evals, p3: Reasoning, p4: Late-Interaction, and p5: Multimodal.

1.13 Video

Here is the full video:

https://youtu.be/Evlk9J-B_uc

2 Modern IR Evaluation for RAG

Based on a presentation by Nandan Thakur

Nandan Thakur is a researcher at the University of Waterloo and a key contributor to major Information Retrieval (IR) benchmarks, including BEIR and the new FreshStack. His talk explains why traditional IR evals designed for search engines may be insufficient for RAG systems. He argues that LLM-generated answers often carry different retrieval goals which necessitate different IR metrics.

2.1 Introduction and Speaker Background

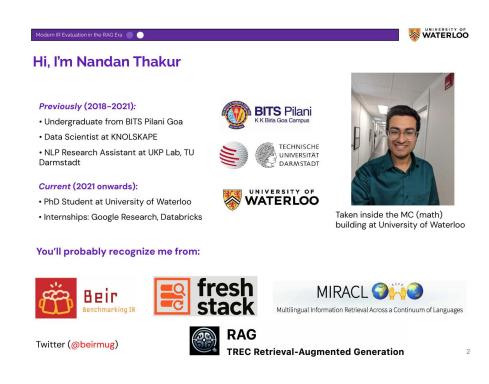
Modern IR Evaluation in the RAG Era

RAG Mini-Series: Guest Lecture #2

July 2, 2025

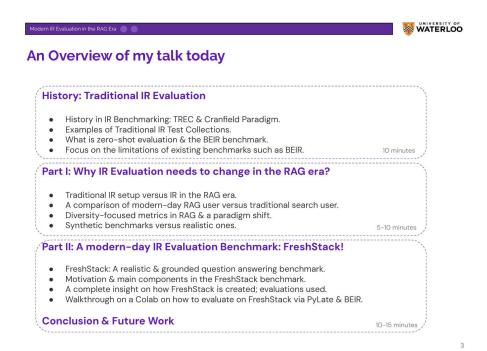
(Timestamp: 00:00:00)

The title slide for Nandan's talk, "Modern IR Evaluation in the RAG Era."



(Timestamp: 00:00:14)

Nandan introduces himself as a fourth-year Ph.D. student at the University of Waterloo. He outlines his background, including research at UKP-TU and internships at Google Research and Databricks. He highlights his work on the BEIR, MIRACL, and FreshStack benchmarks, and the TREC RAG track.



(Timestamp: 00:01:09)

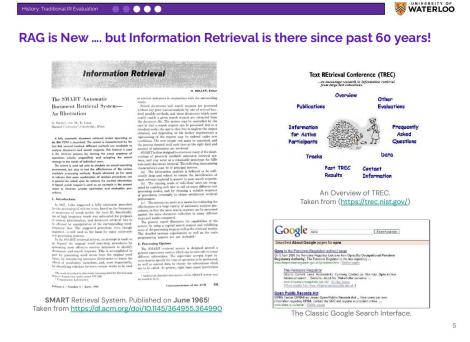
Nandan outlines the presentation's three parts: a history of traditional IR evaluation, an explanation of why evaluation needs to change for RAG, and a deep dive into the FreshStack benchmark as a modern solution.

2.2 The History of Information Retrieval

History: Traditional IR Evaluation

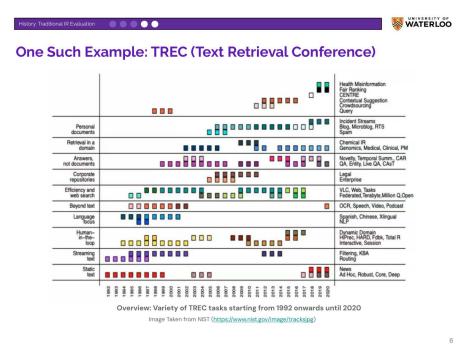
(Timestamp: 00:01:45)

While RAG is new, Information Retrieval is a field with over 60 years of history. The slide contrasts an early Google interface with a modern one to show the evolution of web search.



(Timestamp: 00:01:50)

Nandan emphasizes IR's history by showing a 1965 paper on the SMART Retrieval System, an early automated document retrieval system. He also introduces the Text Retrieval Conference (TREC), an influential conference since the 1990s that continues to produce IR benchmarks and standards.



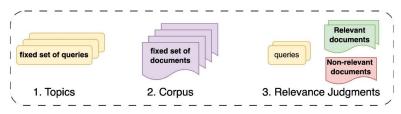
(Timestamp: 00:03:00)

A diagram from NIST illustrates the breadth of TREC's evaluation tasks from 1992 to 2020. These tracks range from classic ad-hoc retrieval to specialized areas like multilingual search and human-in-the-loop evaluation, demonstrating the field's ongoing evolution.

2.3 The Cranfield Paradigm

Traditional IR Evaluation: Cranfield Paradigm

- In the 1960s, Cyril Cleverdon and his colleagues at the College of Aeronautics (or Cranfield University) ran a series of experiments to evaluate the efficiency of indexing systems.
- These experiments are accepted set the standard which search engines use for evaluation of their systems!
- The Cranfield paradigm for IR evaluation crucially gave rise to test collections for evaluation.



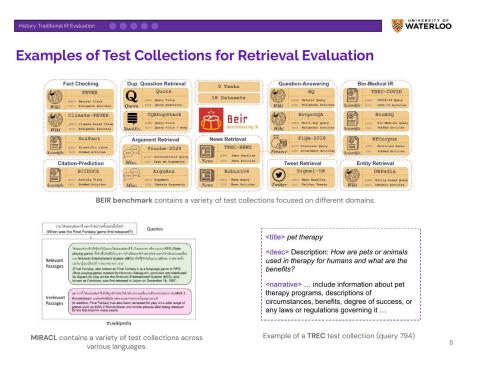
Three vital components in any major test collection in the Cranfield Paradigm

(Timestamp: 00:03:54)

Nandan introduces the **Cranfield Paradigm**, the foundation of traditional IR evaluation developed in the 1960s. It established the concept of a **test collection**, comprising three components:

- 1. **Topics:** A fixed set of user queries.
- 2. Corpus: A fixed collection of documents.
- 3. Relevance Judgments: Human-annotated labels indicating which documents are relevant to which queries.

This three-part structure remains the basis for most IR benchmarks today.

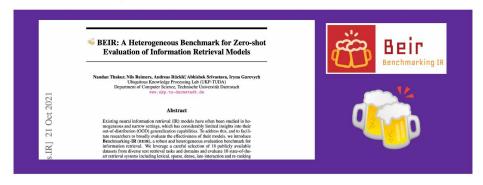


(Timestamp: 00:06:00)

Nandan shows examples of modern test collections. He highlights **BEIR** for its diversity of tasks, **MIRACL** for multilingual retrieval, and the typical **TREC** query structure, which includes a title, description, and detailed narrative.

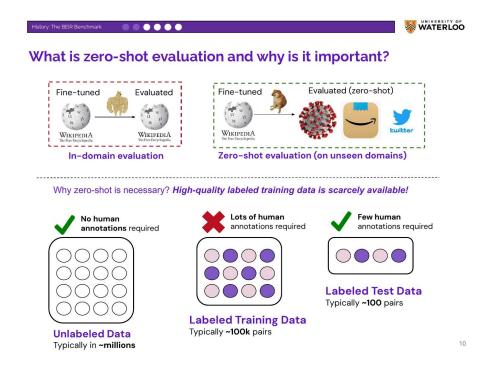
2.4 The BEIR Benchmark

Case in point: The BEIR Benchmark



(Timestamp: 00:07:20)

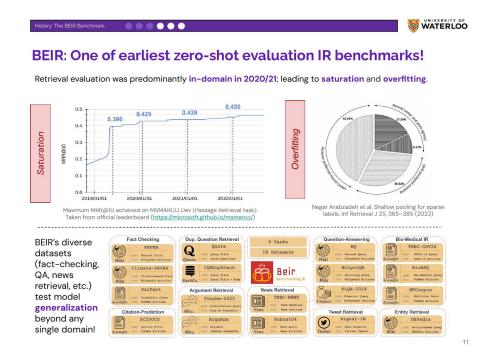
This slide introduces the BEIR (Benchmarking-IR) benchmark, which was among the first to popularize zero-shot evaluation for retrieval models.



(Timestamp: 00:07:38)

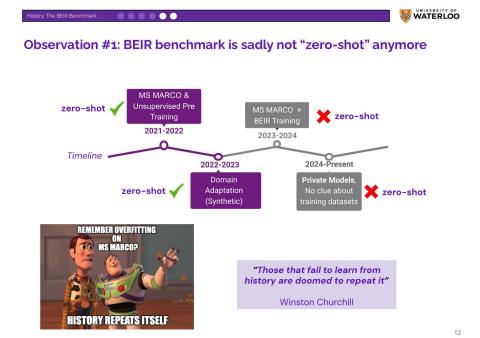
Nandan explains **zero-shot evaluation**, where a model is tested on a domain or task it has not seen during training. This contrasts with *in-domain* evaluation (training and testing on similar data). Zero-shot evaluation is more realistic because high-quality, labeled training data for niche use cases is scarce and expensive to create.

2.5 Problems with Current Benchmarks



(Timestamp: 00:10:09)

Nandan explains the motivation for BEIR. Around 2020-2021, the field focused heavily on the MSMARCO dataset, leading to **saturation** (performance plateaus) and **overfitting**. BEIR was created to combat this by providing a diverse set of datasets to test a model's generalization ability beyond a single domain.



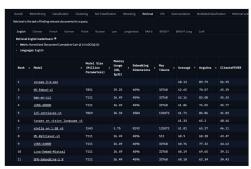
(Timestamp: 00:11:10)

Nandan explains that BEIR is no longer a truly "zero-shot" benchmark. Researchers now often include BEIR's training sets in their model development pipelines. This, along with private models using unknown training data, repeats the overfitting problem that BEIR was designed to solve.

Observation #2: Choosing a leaderboard model is not useful anymore!

- MTEB (retrieval) legacy or V1 leaderboard has over 400 models with scores!
- There are about 10-15 models within 1-2 points of average scores within each other.

I would ask: top 20 models are all great on BEIR leaderboard; but how do they perform on some other benchmark, task or niche domain?

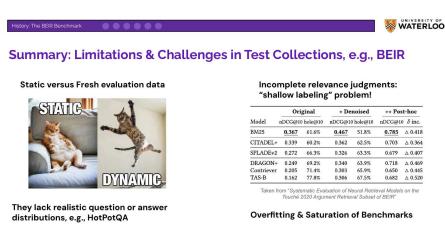


MTEB v1 legacy leaderboard showing the retrieval subset containing 15 datasets from the BEIR benchmark.

13

(Timestamp: 00:13:20)

Nandan highlights a practical issue: leaderboards are now too crowded to be useful. The MTEB leaderboard contains over 400 models, with the top contenders separated by marginal scores. This makes it difficult for practitioners to select a model and raises the question of how these models perform on other, more specialized tasks.



section to Otherwise in the robe attenues of the deliverage of the robe attenues of the additional control of the addition

Recommended models High performance might not generalize 88% 188% 2ero-shot Score (z) Taken from "Maintaining MTEB: Towards Long Term

14

(Timestamp: 00:14:43)

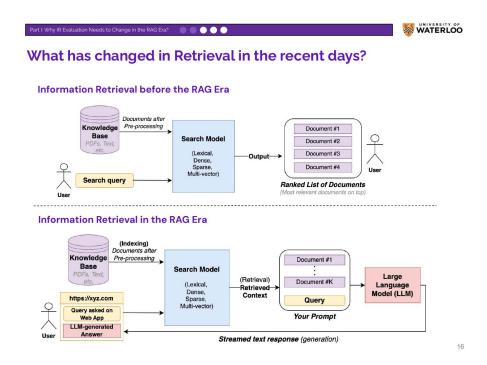
This slide summarizes the limitations of existing test collections like BEIR. They are often static, leading to data contamination risk. They can suffer from incomplete "shallow labeling" from human annotators. They may also lack realistic question distributions, prompting even the creators of benchmarks like HotpotQA to advise against their use for modern agentic systems.

2.6 The RAG Era Changes Everything

Part I: Why IR Evaluation needs to change in the RAG era?

(Timestamp: 00:17:28)

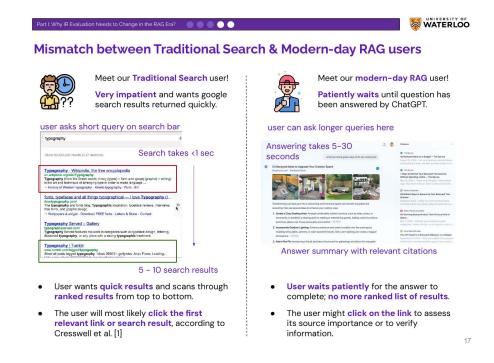
Nandan contrasts the old and new search paradigms. "Search back then" shows a ranked list of links, while "Search now" shows a generated answer block with citations, characteristic of RAG systems.



(Timestamp: 00:18:20)

This slide diagrams the architectural shift. Before RAG, a search model returned a ranked list of documents to the user. In the RAG era, the search model provides retrieved documents as context to an LLM, which then generates a response for the user.

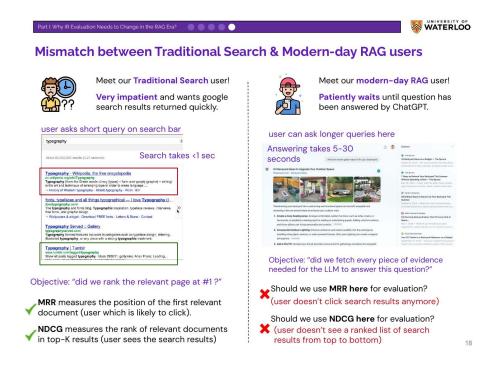
2.7 Different Users, Different Goals



(Timestamp: 00:19:10)

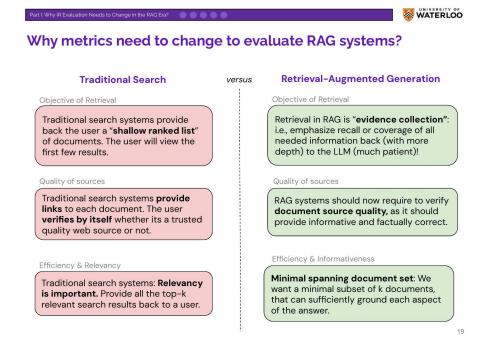
Nandan contrasts the two user types. A traditional search user is impatient, asks short queries, and scans a ranked list to click the first relevant link. A modern RAG user is patient, asks longer queries, and waits for a synthesized summary with citations, which they may use for verification.

2.8 The Evaluation Mismatch



(Timestamp: 00:21:08)

This slide presents the talk's central argument. Traditional metrics like MRR (Mean Reciprocal Rank) and NDCG (Normalized Discounted Cumulative Gain) were designed for the traditional objective: "Did we rank the relevant page at #1?" The new RAG objective is: "Did we fetch every piece of evidence needed for the LLM to answer this question?" For this new goal, MRR and NDCG may be insufficient on their own, as they do not measure comprehensive evidence collection or redundancy.

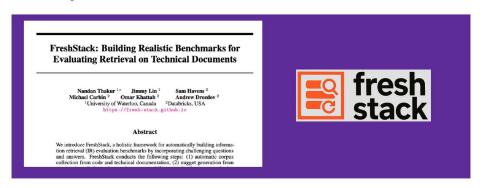


(Timestamp: 00:23:20)

The argument is not to discard traditional relevance but to expand the evaluation criteria for RAG. While **Relevancy is [still] important**, it must now be balanced with new goals like finding a **minimal spanning document set**. This concept captures the need for a set of documents that is not only relevant but also comprehensively covers all aspects of an answer without being redundant.

2.9 Introducing FreshStack

Part II: Modern-day IR Benchmarks: A deep dive into FreshStack



(Timestamp: 00:24:50)

Nandan introduces **FreshStack**, a modern IR benchmark developed with Databricks. It is designed to evaluate retrieval for RAG on technical documents.

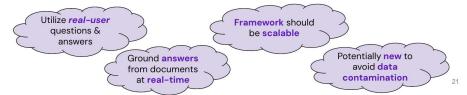
Why we built FreshStack - Motivation?

Most academic RAG benchmarks suffer 3 things:

- They lack realistic questions and/or answer distributions.
- They are artificially easy because they're built as "RAG" datasets.
- 3. They are static and unspecialized.

Problem Definition

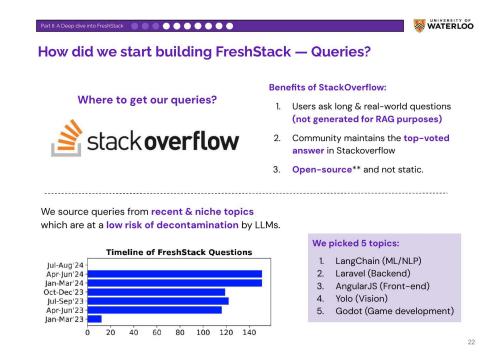
RQ: Can we build an automatic framework to construct realistic RAG benchmarks?



(Timestamp: 00:25:00)

The motivation for FreshStack was to create a realistic RAG benchmark that overcomes the limitations of existing academic benchmarks, which are often static and artificially easy. The framework was designed to use real user questions, ground answers in real-time documents, be scalable, and be new to avoid data contamination.

2.10 FreshStack Data Sources



(Timestamp: 00:26:16)

FreshStack sources its queries from **Stack Overflow**, an ideal source for long, complex, real-world questions with community-vetted answers. To mitigate data contamination, the benchmark uses questions from five recent and niche topics asked primarily in 2023 and 2024.

Part II: A Deep dive into FreshStack

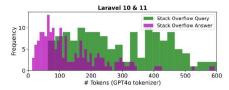
How did we start building FreshStack — Corpus?

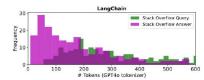
Where to get our documents?

Benefits of GitHub Repositories:

- 1. Constantly updated and evolved by the maintainer of the repository.
- 2. Contains code, text and all forms of technical documentation.
- 3. Open-source** and not static.

FreshStack queries are **quite long** (code snippets, outputs, text); can be even longer than **answers** themselves!



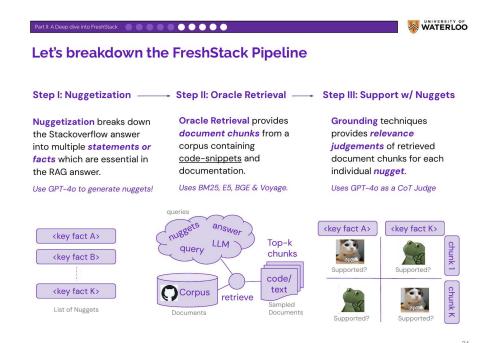


23

(Timestamp: 00:27:30)

The document corpus comes from the **GitHub Repositories** of the corresponding topics. This provides a constantly updated source of technical documentation and code. An interesting finding is that for technical queries, the questions can be significantly longer than the answers.

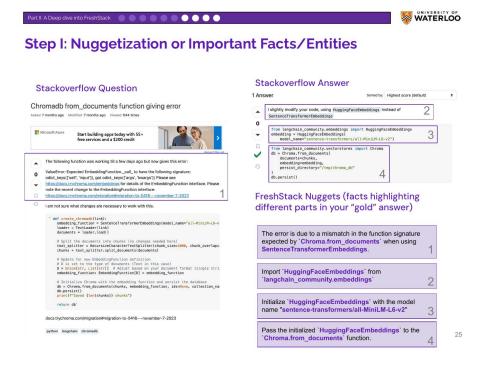
2.11 The FreshStack Pipeline



(Timestamp: 00:28:18)

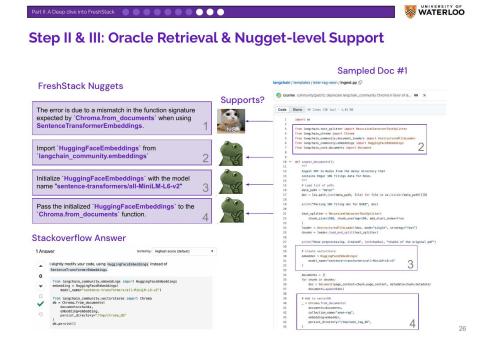
Nandan explains the three-step automated pipeline for building FreshStack:

- 1. **Nuggetization:** A Stack Overflow answer is broken down by GPT-40 into essential, atomic facts or "nuggets."
- 2. **Oracle Retrieval:** A diverse pool of candidate documents is retrieved from the corpus using a hybrid of models.
- 3. **Support w/ Nuggets:** A GPT-40 judge checks which retrieved document chunks support each individual nugget, creating finegrained relevance judgments.



(Timestamp: 00:29:50)

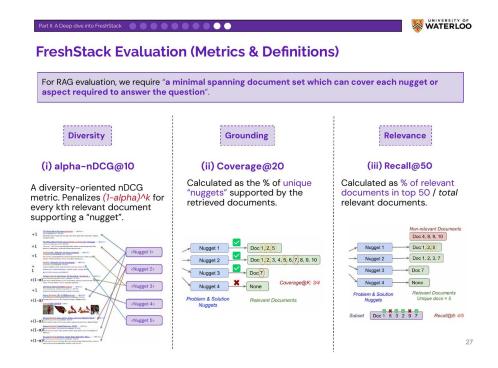
This slide shows a concrete example of nuggetization. An answer to a Chroma.from_documents error is broken down into four key facts: the cause of the error, the required import, the initialization step, and the function call.



(Timestamp: 00:30:50)

This slide illustrates the final steps. After a document is retrieved, the system checks which of the four nuggets it supports. This process creates nugget-level relevance labels, forming the basis for the new evaluation metrics.

2.12 FreshStack Evaluation Metrics



(Timestamp: 00:31:26)

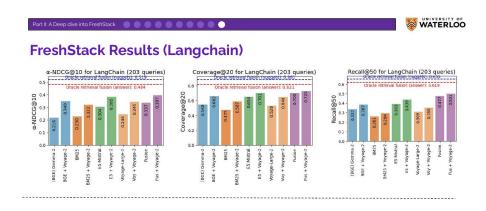
Nandan introduces the three metrics used in FreshStack, which provide a holistic view of RAG retrieval performance:

- 1. **Diversity (alpha-nDCG@10):** Measures non-redundancy, penalizing the retrieval of multiple documents that support the same fact.
- 2. **Grounding (Coverage@20):** Measures the percentage of unique nuggets supported by the retrieved documents, directly evaluating evidence collection.

3. Relevance (Recall@50): A traditional metric that serves as a foundational check on whether the retrieved documents are ontopic.

This multi-faceted approach augments traditional relevance with metrics tailored to the specific goals of RAG.

2.13 Key Results and Findings



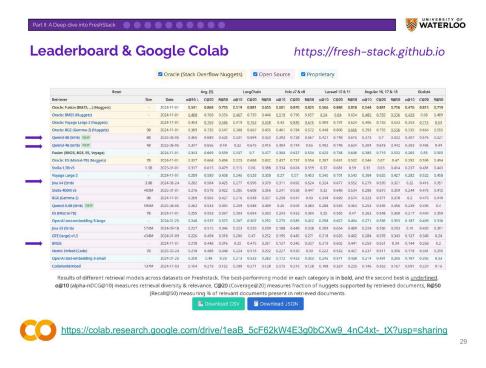
FreshStack Results highlights & Key Takeaways:

- 1. Current retrieval techniques (using raw questions) are unable to retrieve relevant documents.
- 2. No individual model performs best across all topics in FreshStack.
- 3. Rerankers enhance retrieval performance (voyage-2), however not without explicit fine-tuning.
- 4. Oracle approaches using Nuggets/Answer score much higher there's plenty of headroom!

28

(Timestamp: 00:33:19)

Nandan presents results from the benchmark. Key findings include that current retrieval techniques struggle on these realistic tasks, and no single model performs best across all topics. The large gap between current model performance and the theoretical "Oracle" maximum indicates significant room for improvement.



(Timestamp: 00:34:55)

Nandan shares the public FreshStack leaderboard and a Google Colab notebook. The notebook provides a script for users to evaluate their own models on FreshStack using its multi-dimensional metrics.

onclusion and Summary

So what did we learn today?

- The traditional Cranfield paradigm is useful for traditional retrieval evaluation but misses out on evaluating critical aspects of modern RAG applications.
- Benchmarks like BEIR encourage zero-shot evaluation, but are stale now with extensive leaderboard overfitting, providing a very low signal in terms of benchmark usability.
- The traditional search and the RAG setup has a mismatch. Users don't see ranked results anymore and retrieved results are evidence collection for the LLM.
- Metrics need to change for evaluating retrieval in RAG systems, as good RAG retriever needs to provide documents from relevant, diverse, informative and correct sources.
- FreshStack is a modern IR evaluation benchmark, containing realistic and recent user-sourced queries that continuously updates. Queries & answers are sourced from real-users!
- FreshStack breaks the answer into facts (nuggets) and conducts evaluation using nuggets based on multiple modern IR metrics, including diversity, coverage, and relevance.

30

(Timestamp: 00:36:01)

This slide summarizes the talk's main points. Traditional IR evaluation may be insufficient for RAG depending on the use case. Benchmarks like BEIR are now suffering from overfitting. Often, the goal of RAG retrieval is evidence collection, requiring metrics that evaluate diversity, informativeness, and correctness in addition to relevance.

Thank you for listening!

I would like to thank my FreshStack co-authors, *Omar Khattab, Andrew Drozdov, Sam Havens, Michael Carbin* and *Jimmy Lin*!

Next, I thank *Ben, Hamel* and *Shreya* for inviting me as a guest lecturer!

Lastly, I would like to thank *Xueguang*, *Crystina* and *Shivani* for providing me feedback on this presentation.

31

WATERLOO

(Timestamp: 00:37:15)

Nandan concludes by thanking his collaborators. The slide's meme reinforces his message: good evaluations are essential for developing better models.

2.14 Chapter Reflections

Nandan's message was to consider other retrieval metrics beyond relevance based on your product's needs. He argued that we must sometimes reconsider what "good" retrieval means. For the stack overflow use case, he considered multiple dimensions of performance:

- Grounding (or Coverage): Did the retrieval system fetch all the evidence needed to construct a complete and accurate answer? A missing fact can lead to an incomplete or incorrect generation, even if the retrieved documents are otherwise highly relevant.
- **Diversity:** Are the retrieved documents efficiently informative? Retrieving multiple documents that repeat the same information is less valuable than retrieving a set of documents that each contribute a unique and essential fact.
- Relevance: Is the retrieved information on-topic? This remains a fundamental check. A diverse and well-grounded set of documents is useless if it pertains to the wrong subject.

This is not a call to discard traditional metrics but to **augment** them. The FreshStack benchmark, with its blend of Recall, Coverage, and Diversity metrics, is an example of this.

2.15 Video

Here is the full video:

https://youtu.be/Trps2swgeOg

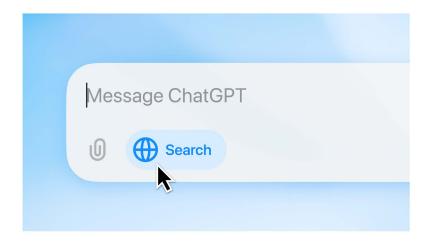
3 Optimizing Retrieval with Reasoning Models

Based on a presentation by Orion Weller

Orion Weller from Johns Hopkins University focuses on embedding the instruction-following and reasoning capabilities of modern Large Language Models (LLMs) directly into the retrieval process.

In his talk, Orion argues that while LLMs have improved RAG, the core retrieval step has remained static. He introduces a paradigm where instruction-following and reasoning are baked directly into retrieval models, a fundamental shift from using LLMs for query rewriting or as generic rerankers.

3.1 LLM Capabilities: Instruction Following and Reasoning



(Timestamp: 00:00:18)

The talk begins by highlighting the user-facing interfaces of modern LLMs like ChatGPT, which have set new expectations for how we interact with AI. One key capability of LLMs is **instruction following**: executing complex, multi-part natural language instructions with high fidelity.

Instruction Following

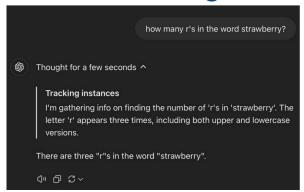
Generate a haiku about information retrieval in the style of a pirate and mention RAG.

Scourin' the sea wide, RAG finds treasure in the fog— Answers hoist with pride!

(Timestamp: 00:00:36)

Orion shows the result of a pirate-themed haiku prompt. The model successfully adheres to all constraints: it generates a haiku, maintains a pirate style, and mentions "RAG," demonstrating a level of instruction following that is a recent and significant advancement.

Reasoning



(Timestamp: 00:00:58)

A second key capability is **reasoning**, also known as test-time compute or "thinking." The slide shows a model verbalizing its thought process to solve a problem, generating intermediate "thinking tokens" that outline its step-by-step logic before providing the final answer.

3.2 The Search Paradigm Hasn't Changed

(Timestamp: 00:01:52)

To illustrate how little the search paradigm has changed, Orion shows Google's interface from 1999.



(Timestamp: 00:01:58)

He contrasts it with a modern Google search bar. Despite 26 years of development, the fundamental interaction remains the same: a user types keywords, and the system matches them to return a list of links.

Search really hasn't changed

Despite using LLMs, we're just adding a wrapper around the results

(Timestamp: 00:02:46)

Despite the interface, Orion argues the underlying retrieval process has not evolved. Even in advanced systems, the LLM is often just a "wrapper." The system sends the query to a traditional search engine, gets back a standard list of results, and then uses the LLM to summarize them. The retrieval step itself hasn't gained the new capabilities of the LLM.

3.3 Evolution of Search Paradigms

Keyword Search

Query

Find websites explaining data privacy

Documents

Data Encryption Standards www.nist.gov/standards/

Wolves Outside Your Data www.janerodgers.blog/wolves

Digital Protectionwww.clearlaw.net/digital

(Timestamp: 00:03:58)

To illustrate current limitations, Orion starts with **Keyword Search**, which relies on exact lexical matching. Given a query and three documents, keyword search matches "Data Encryption Standards" and "Wolves Outside Your Data" because they contain the keyword "data."

It fails to retrieve "Digital Protection" because it lacks the keyword "data," even though "digital" is semantically similar.

Semantic Search

Query

Find websites explaining data privacy

Documents

Data Encryption Standards www.nist.gov/standards/

Wolves Outside Your Data www.janerodgers.blog/wolves

Digital Protection www.clearlaw.net/digital

(Timestamp: 00:04:11)

The next evolution is **Semantic Search**, which matches based on meaning, often by representing queries and documents as vectors in a shared semantic space. A good semantic search model would retrieve all three documents, as it understands the relationship between "data" and "digital," and "privacy" and "protection."

Instruction-based Search

Query

Find websites explaining data privacy and uses extended metaphors

Documents

Wolves Outside Your Data www.janerodgers.blog/wolves

Data Encryption Standards www.nist.gov/standards/

Digital Protection www.clearlaw.net/digital

(Timestamp: 00:05:25)

Orion introduces **Instruction-based Search**, where the query is a nuanced command. The user wants to find documents about data privacy that also use "extended metaphors."

An instruction-based search system should understand this meta-level constraint and retrieve only the "Wolves Outside Your Data" document, which uses a metaphorical title. It correctly identifies that the other two documents, while topically relevant, do not meet the stylistic instruction.

Prompt and Reasoning-based Search

Query

Find websites
explaining data privacy
and uses extended
metaphors. Have
really high recall or I
will lose my job

Documents

Wolves Outside Your Data www.janerodgers.blog/wolves

Data Encryption Standards www.nist.gov/standards/

Digital Protection www.clearlaw.net/digital

1

(Timestamp: 00:06:16)

Orion pushes the concept to its extreme with **Prompt and Reasoning-based Search**. The query now includes instructions about the desired *behavior* of the search engine, such as "Have really high recall or I will lose my job."

A traditional search engine would misinterpret this, likely searching for documents containing the word "recall." An advanced, reasoning-based retriever should understand the user's intent and adjust its retrieval strategy.

3.4 Understanding Instructions in IR

What is an instruction in IR?

Doc attributes: date, length, source

NLU aspects: sentiment, style

Logical conditions AND/OR/NOT

(Timestamp: 00:06:42)

What is an instruction in the context of IR? Orion breaks it down into several categories:

- **Document attributes** like date, length, or source
- NLU aspects, such as document sentiment or writing style
- Logical conditions, combining multiple constraints with operators like AND, OR, and NOT

The space of possible instructions mirrors the complexity of natural language.

3.5 Introducing Promptriever and Rank1



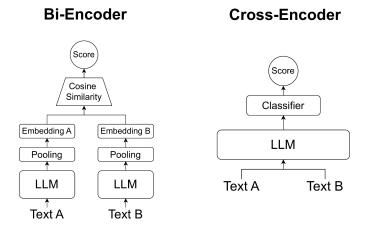
19

(Timestamp: 00:07:45)

Orion introduces two models from his research that embody these principles:

- 1. **Promptriever**: A fast embedding model for following instructions during initial retrieval
- 2. Rank1: A powerful but slower reranker that uses reasoning and test-time compute for nuanced relevance judgments

3.6 Promptriever: Instruction-Trained Retrieval



(Timestamp: 00:08:23)

Orion explains the two main retrieval architectures. A **Bi-Encoder** (dense retriever) creates separate query and document embeddings for fast comparison, making it highly scalable. A **Cross-Encoder** (reranker) processes the query and document together for deeper interaction at a higher computational cost. Promptriever is a biencoder.

Can we make promptable retrievers?

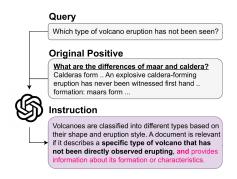
Can bi-encoders take instructions?

Training data for instruction-following

(Timestamp: 00:09:10)

The main research question was how to enable fast, scalable bi-encoders to understand complex instructions. The missing ingredient was **training data**. Existing retrieval datasets like MSMARCO lack instructions because users don't type them into traditional search engines.

Generating Training Data



We have to generate synthetic instructions

25

(Timestamp: 00:10:07)

This slide illustrates the process of generating the training data, starting with a standard query. The process uses an existing query-document pair from a standard dataset and uses an LLM to generate a detailed **instruction** that makes the relevance criteria more specific. A crucial part was also generating **instruction negatives** - documents that are relevant to the query but irrelevant to the *instruction*.

3.7 Promptriever Evaluation Results

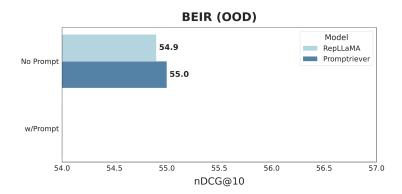
Results

FollowIR p-MRR -3.1 InstructIR Robust@10 0 10 20 30 40 50 60 70 Score

(Timestamp: 00:12:36)

On FollowIR, the baseline RepLLaMA (and all prior embedding models) scored negatively, performing *worse* when given an instruction. Promptriever is the first to achieve a positive score, demonstrating that bi-encoders can learn to follow instructions.

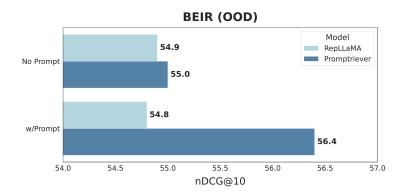
Results



(Timestamp: 00:13:58)

Without a prompt, Promptriever performs comparably to the RepLLaMA baseline, showing that instruction-following capabilities don't hurt performance on traditional tasks.

Results



(Timestamp: 00:14:13)

When a generic instruction is added, Promptriever's performance increases significantly, while the baseline's degrades slightly. This demonstrates that Promptriever's retrieval strategy can be controlled with natural language - a form of zero-shot hyperparameter optimization via prompting.

3.8 Rank1: Reasoning-Based Reranking

Rank1: Test-Time Compute for Information Retrieval

Orion Weller

Kathryn Ricci

Yang Andrew Yates

Dawn Lawrie

Benjamin Van Durme

43

(Timestamp: 00:16:08)

The focus now shifts to Rank1, the reasoning-based model. The associated paper's title is "Rank1: Test-Time Compute for Information Retrieval," highlighting its focus on reasoning in the reranking stage.

What does test-time compute look like in IR?

do snow leopards change color

Snow leopards have long, thick fur, and their base color varies from smoky gray to yellowish tan, with whitish underparts ...

<think> The user is asking if snow leopards change color. The passage provided describes their fur color as varying from smoky gray to yellowish tan, with some patterns. Hmm, the key here is whether "varies" implies that they change color over time, like seasonally or due to some factors.

But wait, "varies" might just mean that different individuals have different base colors, not that a single leopard changes its color. The passage doesn't mention anything about changing color; it's just describing their appearance. ...

Therefore, the passage isn't directly relevant to the question of whether they change color. So the answer should be false.

</think> false

48

(Timestamp: 00:17:08)

This slide shows what the reasoning process looks like in information retrieval. Given a query and a document, the model generates a detailed reasoning trace, identifying key phrases, analyzing the relationship between query and document, and questioning its own interpretations before arriving at a final judgment.

What does this look like?

Model Reasoning

Example: Can you find a similar leetcode problem?

<think> Okay, let's tackle this problem. The user is asking whether the given passage is relevant to their query about finding problems with similar data structures or algorithms. The query specifically mentions problems that share similar data structures (like arrays, trees) or algorithms (DFS, DP, sorting, traversals). The example problem is about the rainwater trapping problem, which uses a two-pointer approach. Now, looking at the passage provided, it's about the "Max Area" problem, which also uses a two-pointer

approach. Both problems involve arrays and solving them with a two-pointer technique. The rainwater problem uses a two-pointer approach to find the maximum trapped water, while the max area problem does the same to find the maximum area between vertical lines.

The key here is that both problems share the same algorithmic approach (two pointers) and similar data

structures (arrays). Even though the problems are different (trapping rain vs. max area), the underlying algorithm and data structure similarities make them relevant. The user is looking for problems that share these similarities, so the passage does fit that criteria. Therefore, the answer should be true

.

(Timestamp: 00:18:50)

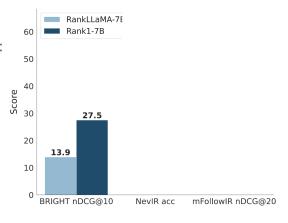
This slide shows Rank1's reasoning on a LeetCode problem. Asked to find a similar problem, it correctly identifies the core "two-pointer approach" algorithm in the provided document and recognizes that the candidate document also uses the same technique, demonstrating a deep, algorithmic level of understanding.

3.9 Rank1 Performance Results

Results

We evaluate on a broad range of tasks:

- BRIGHT (reasoning)
- NevIR (negation)
- mFollowIR (instructions)



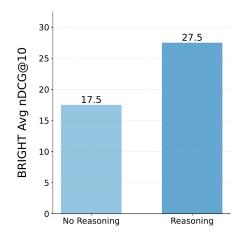
(Timestamp: 00:19:38)

The evaluation covers tasks testing reasoning (BRIGHT), negation (NevIR), and instruction following (mFollowIR). The baseline model, RankLLaMA, was trained on **10 times more data** than Rank1. Despite being trained on far less data, Rank1 nearly doubles the performance of the baseline on the BRIGHT reasoning benchmark.

Results

What about a direct comparison of the reasoning chain?

Same data, same model, no chain



(Timestamp: 00:20:16)

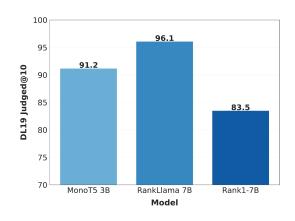
To isolate the impact of the reasoning chain, they compared training the same model on the same data, with and without the "thinking" part of the training examples. The results show that training the model to generate the reasoning chain leads to a massive 10-point gain in performance. The act of "thinking" itself unlocks these advanced capabilities.

3.10 Finding Novel Relevant Documents

Results

We were surprised by the low initial scores on DL19/DL20

Judged@10 is significant less!



(Timestamp: 00:20:44)

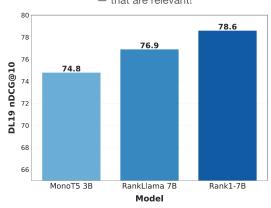
They were surprised by low scores on the DL19/DL20 datasets, discovering their model was finding many documents that had never been judged by human annotators because older systems had never retrieved them.

Results

It's finding new docs that previous systems didn't
— that are relevant!

We re-judged the unjudged + incorrect preds for all models

Perhaps the community should move on to newer eval datasets (**DL19 was before BERT!**)



(Timestamp: 00:21:39)

Reasoning-based models are not just improving scores on old benchmarks; they are **finding new**, **relevant documents** that previous systems missed. This also suggests the IR community should move on from older evaluation datasets as they may not be equipped to measure modern model capabilities.

3.11 Chapter Takeaways

The goal: IR that works like LLMs

Query

Find websites
explaining data privacy
and uses extended
metaphors. Have
really high recall or I
will lose my job

Documents

Data Encryption Standards www.nist.gov/standards/

Digital Protection www.clearlaw.net/digital

64

(Timestamp: 00:22:37)

Orion concludes that the overall goal is to create IR systems that work like LLMs, capable of handling queries that combine topic, style, and behavioral instructions.

Key insights from this work:

- 1. **Promptriever** enables fast bi-encoder retrievers to follow complex instructions through specialized training data
- 2. Rank1 uses reasoning chains to achieve superior performance on complex retrieval tasks
- 3. Both models demonstrate that LLM capabilities can be successfully integrated into retrieval systems
- 4. Reasoning-based models discover novel relevant documents that traditional systems miss

New retrievers can directly benefit from rapid LLM advancements. As LLMs get better at reasoning and instruction following, so will the retrieval systems built upon them.

3.12 Video

Here is the full video:

https://youtu.be/YB3b-wPbSH8

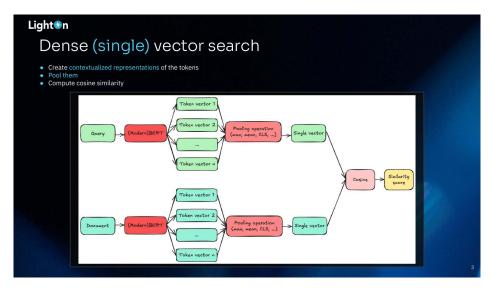
4 Late Interaction Models For RAG

Based on a presentation by Antoine Chaffin

Antoine Chaffin, a researcher at LightOn, contributed to impactful open-source tools like ModernBERT and PyLate, a library for working with late-interaction models.

His talk explains the intrinsic limitations of single-vector search, such as information loss from pooling, and introduces late interaction models as a more powerful alternative for modern RAG use cases like out-of-domain generalization and long context retrieval.

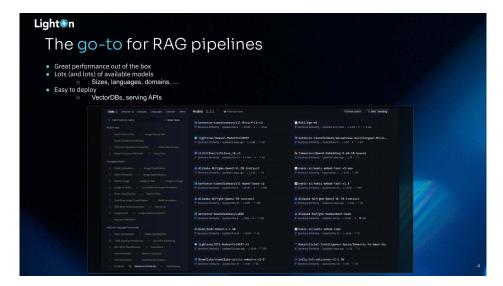
4.1 Dense Vector Search Architecture



(Timestamp: 00:03:07)

This slide diagrams the standard architecture for dense (single) vector search. A query and a document are separately fed through an encoder model (like BERT) to generate contextualized vector representations for each token. A pooling operation (e.g., max, mean, [CLS] token, etc.) then compresses all these token vectors into a single vector for the query and a single vector for the document. Finally, a similarity score (typically cosine similarity) is computed between these two vectors to determine relevance. The information loss in the pooling step is a key limitation of this approach.

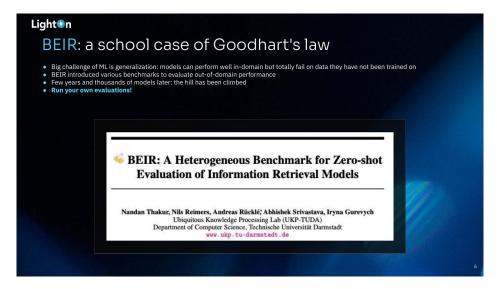
4.2 Why Dense Models Became Popular



(Timestamp: 00:03:54)

Dense vector search has become the standard for RAG pipelines for several reasons. It offers strong out-of-the-box performance, and a vast number of pre-trained models are available on platforms like the Hugging Face Hub, catering to different sizes, languages, and domains. Furthermore, these models are easy to deploy using the growing ecosystem of vector databases and serving APIs.

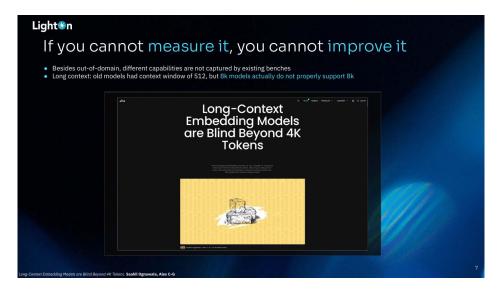
4.3 The Benchmark Problem



(Timestamp: 00:04:17)

Antoine uses the BEIR benchmark as an example of Goodhart's Law in action. BEIR was introduced to evaluate the out-of-domain generalization of retrieval models. However, as it became the standard benchmark to beat, models began to overfit to its specific datasets. Consequently, top-performing models on the BEIR leaderboard may not generalize well to new, unseen use cases, underscoring the importance of running your own evaluations on your specific data.

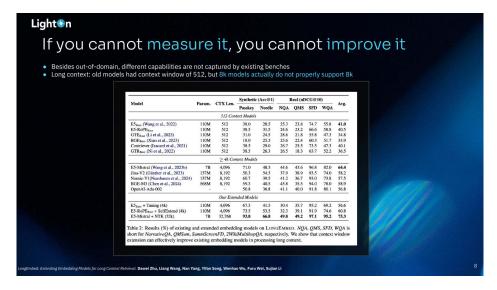
4.4 Hidden Limitations



(Timestamp: 00:05:36)

Antoine argues that if you cannot measure a capability, you cannot improve it. Existing benchmarks often miss important aspects of model performance. For instance, most older models were evaluated with a context window of only 512 tokens. While many newer models claim to support 8k tokens, recent evaluations have shown that their performance degrades significantly beyond 4k, a limitation that was not captured by older benchmarks.

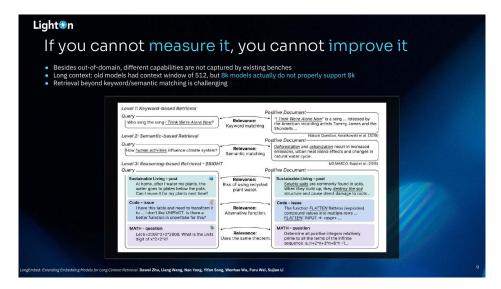
4.5 Long Context Performance



(Timestamp: 00:06:24)

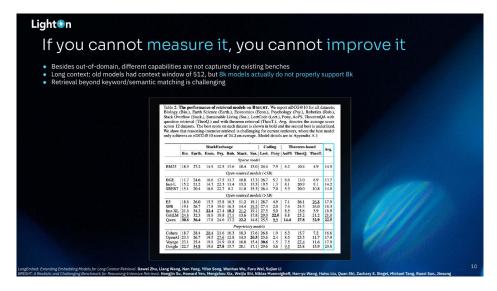
This table from the LongEmbed paper illustrates the performance of various embedding models on long-context retrieval tasks. It shows that extending models with techniques like SelfExtend or NTK can significantly improve their ability to handle long contexts, with the E5-Mistral + NTK model achieving the highest average score.

4.6 Complex Retrieval Tasks



(Timestamp: 00:06:33)

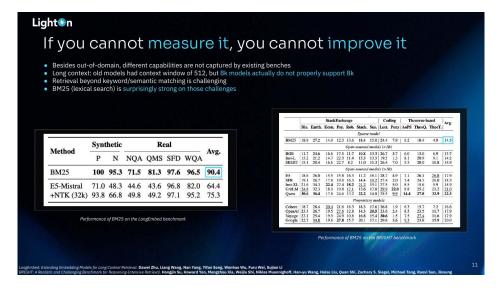
Retrieval goes beyond simple keyword or semantic matching. Modern RAG systems require more complex, reasoning-based retrieval. For example, a query asking for a different Snowflake function than UNPIVOT requires understanding the function's purpose, not just matching keywords. Similarly, a math question might require retrieving a document that uses the same theorem, even if the numbers are different.



(Timestamp: 00:07:27)

This table shows the performance of various retrieval models on the BRIGHT benchmark, which is designed for reasoning-intensive tasks. The results show that even large, powerful models struggle, with the best model achieving an average nDCG@10 of only 24.3.

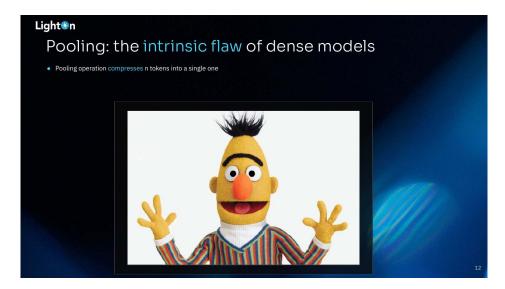
4.7 BM25's Surprising Strength



(Timestamp: 00:07:50)

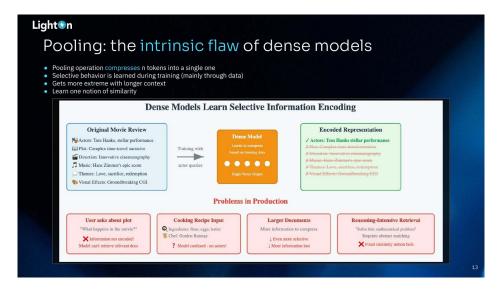
Interestingly, BM25, a simple lexical search method that does not use deep learning, performs surprisingly well on these more challenging long-context and reasoning-intensive benchmarks. Its strength lies in its lack of compression; by matching exact keywords, it avoids the information loss that plagues dense models, making it a robust baseline for out-of-domain tasks.

4.8 The Pooling Problem



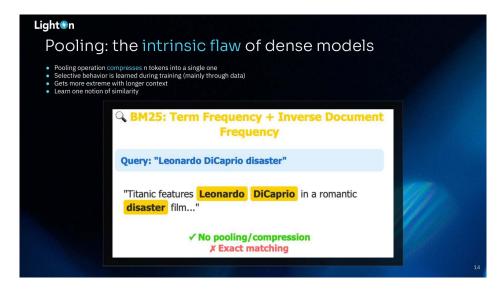
(Timestamp: 00:08:24)

Pooling is the core flaw of dense models. The process of compressing all the token vectors from a document into a single vector is inherently lossy. This compression forces the model to be selective about what information it retains.



(Timestamp: 00:08:41)

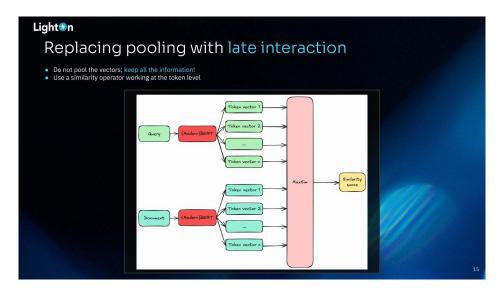
This slide illustrates how dense models learn selective information encoding. If a model is trained on a movie review dataset where queries are mostly about actors, it will learn to prioritize and encode information about actors while discarding details about the plot, music, or themes. This selective behavior leads to poor performance on out-of-domain queries (e.g., asking about the plot) or when applied to new domains entirely (e.g., cooking recipes).



(Timestamp: 00:10:42)

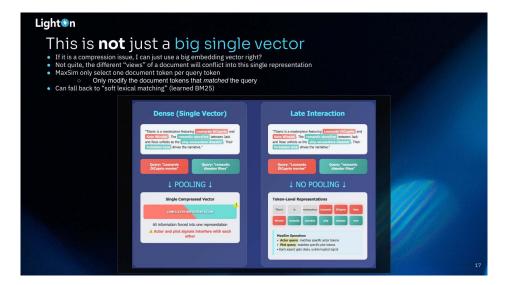
BM25 is effective in certain cases because it avoids pooling and compression, relying on exact keyword matching. In the example, "Leonardo DiCaprio disaster" in the query directly matches the terms in the document. However, this approach fails when there's no direct lexical overlap, such as with synonyms or different languages.

4.9 Late Interaction Solution



(Timestamp: 00:11:32)

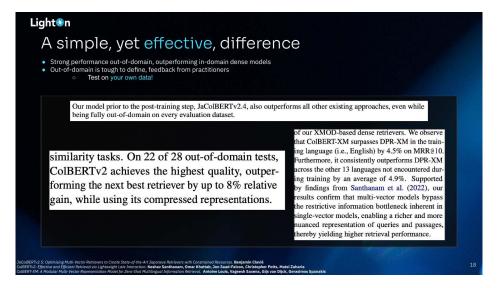
Late interaction models offer a solution by replacing the pooling step. Instead of compressing token vectors into a single one, they keep all the token-level information. A token-level similarity operator, such as MaxSim, is then used to compute the final score. MaxSim works by finding the maximum similarity between each query token and all document tokens, then summing these maximum scores.



(Timestamp: 00:12:27)

This slide provides a clear comparison between dense and late-interaction models. A dense model forces different concepts (e.g., actors and plot) into a single, conflicted representation. In contrast, a late-interaction model maintains separate token-level representations. The MaxSim operator can then match a query about actors to the specific actor tokens and a query about the plot to the plot tokens, resulting in clean, uninterrupted signals for each aspect of the document.

4.10 Performance Advantages



(Timestamp: 00:13:51)

Late-interaction models like ColBERT have demonstrated strong outof-domain performance, even outperforming in-domain dense models. Antoine emphasizes that because "out-of-domain" is hard to define, the best approach is to test these models on your own specific data to see the benefits.

(Timestamp: 00:15:04)

The GTE-ModernColBERT model, which uses late interaction, achieves state-of-the-art results on the LongEmbed benchmark. Notably, it outperforms other models by a large margin, even though it was trained on documents with a maximum length of only 300 tokens, while the base models it's compared against were trained with an 8k context window.

(Timestamp: 00:15:52)

On the reasoning-intensive BRIGHT benchmark, the 150M-parameter Reason-ModernColBERT outperforms all 7B-parameter models (which are 45 times larger). It is even competitive with the proprietary ReasonIR-8B model, which was trained on the same data.

(Timestamp: 00:16:30)

This slide provides a direct, apples-to-apples comparison on the BRIGHT benchmark. A late-interaction model achieves a mean score of 19.61, while a dense (single vector) model with the same backbone and training data scores only 12.31.

4.11 Interpretability Benefits

(Timestamp: 00:16:48)

Interpretability is a valuable bonus of late-interaction models like ColBERT. Because the MaxSim operator performs granular, token-level matching, it's possible to see exactly which parts of a document contributed to the match. This allows you to identify the specific subchunk of text that is most relevant, which is useful for debugging and for providing more precise context to an LLM in a RAG pipeline.

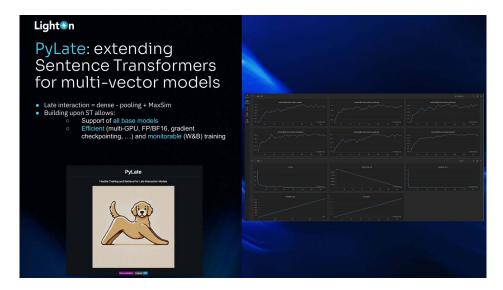
4.12 Barriers to Adoption

(Timestamp: 00:17:42)

Despite their advantages, dense models are still mainstream. Antoine attributes this to three main factors:

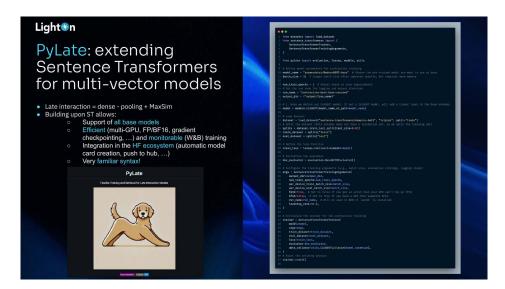
- 1. **Storing cost:** Storing n token vectors instead of one is more expensive, though techniques like quantization and footprint reduction are making this more manageable.
- 2. **VectorDB support:** Initially, most vector databases did not support the different search mechanism required by late-interaction models. However, this is changing, with major providers like Vespa, Weaviate, and LanceDB now offering support.
- 3. Lack of accessible tools: The widespread availability of libraries like Sentence Transformers made it very easy to work with dense models.

4.13 PyLate: Making Late Interaction Accessible



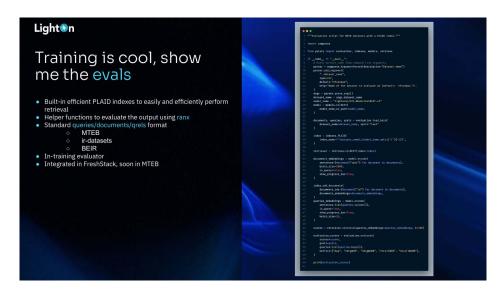
(Timestamp: 00:18:43)

To address the lack of accessible tools, Antoine and his collaborators created **PyLate**, a library that extends the popular Sentence Transformers framework for multi-vector models. Since late interaction is essentially a dense model without pooling and with a MaxSim operator, PyLate can leverage the existing Sentence Transformers ecosystem.



(Timestamp: 00:20:08)

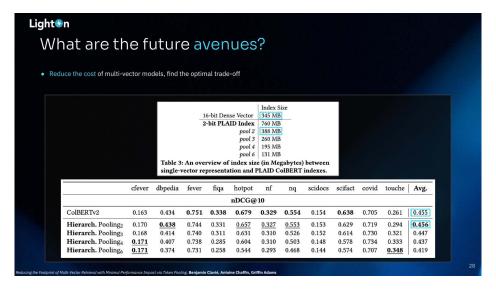
The syntax for training models with PyLate is designed to be very similar to Sentence Transformers. This familiarity makes it easy for developers to adapt their existing boilerplates and workflows. The example code shows how to define a model, load a dataset, configure training arguments, and start training with just a few modifications to a standard Sentence Transformers script.



(Timestamp: 00:21:28)

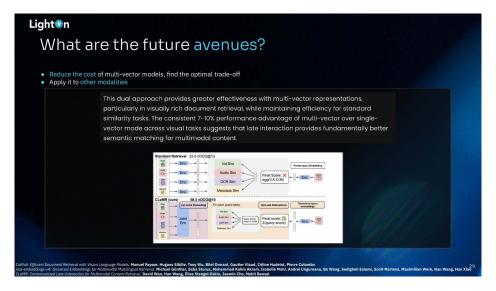
PyLate is not just for training; it also provides tools for evaluation. It includes a built-in, efficient index based on PLAID for fast retrieval. It also has helper functions that use the ranx library to easily compute standard IR metrics (like NDCG and Recall) on the retrieval output.

4.14 Future Research Directions



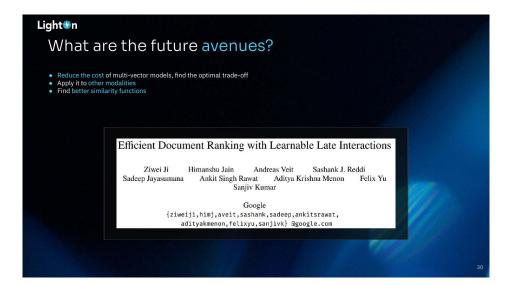
(Timestamp: 00:22:49)

One future research avenue is to reduce the storage cost of multi-vector models. Techniques like hierarchical pooling and quantization are being explored to find the optimal trade-off between index size and performance.



(Timestamp: 00:23:34)

Another promising direction is applying late interaction to other modalities beyond text. Approaches like ColPali have already used ColBERT for OCR-free RAG with text and images. The diagram shows the CLaMR model, which uses late interaction for multimodal content retrieval across video, audio, OCR, and metadata.



(Timestamp: 00:24:21)

The final future avenue is to develop better similarity functions. While the MaxSim operator is effective and has nice properties, it is relatively naive. Research into learnable late interaction functions presents an opportunity to further improve the performance of these models.

4.15 Chapter Summary

(Timestamp: 00:24:36)

Key takeaways from late interaction models:

- 1. **Overcome limitations**: Late interaction models address the fundamental information loss problem of single-vector search
- 2. Modern use cases: They excel at out-of-domain, long context, and reasoning-intensive retrieval tasks
- 3. **Growing ecosystem**: Tools like PyLate and vector database support make them increasingly accessible
- 4. **Performance gains**: Consistent improvements over dense models across challenging benchmarks
- 5. **Interpretability**: Token-level matching provides valuable debugging and explanation capabilities

The technology is mature enough for production use, and the performance benefits often outweigh the minor increases in storage and computational costs.

4.16 Video

Here is the full video:

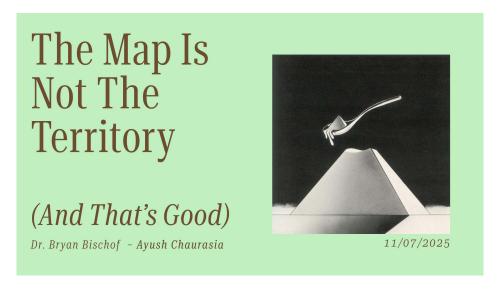
 $\rm https://youtu.be/1x3k0V2IITo$

5 RAG with Multiple Representations

Based on a presentation by Bryan Bischof and Ayush Chaurasia

Bryan Bischof and Ayush Chaurasia argued that effective retrieval lies not in finding a single, perfect data representation, but in creating and leveraging multiple, diverse representations with a router to better serve user intent.

5.1 The Map is Not the Territory

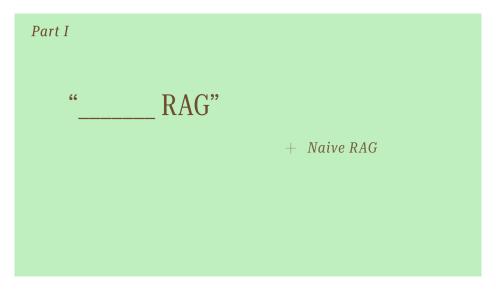


(Timestamp: 01:00)

The presentation's central theme is that a "map" (a data representation) is not the same as the "territory" (the real-world data). In machine learning, this distinction is an advantage. Models and embeddings are our maps, and we can create many different maps of the same territory to serve different purposes.

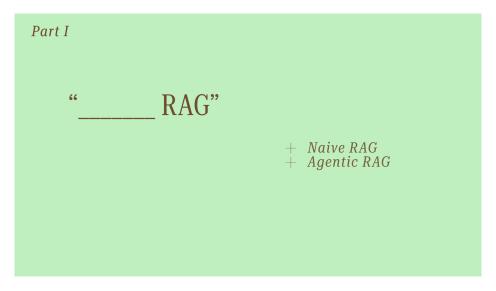
5.2 Deconstructing RAG Buzzwords

The RAG landscape is filled with terms that can obscure fundamental principles. These terms can be deconstructed into simpler concepts.



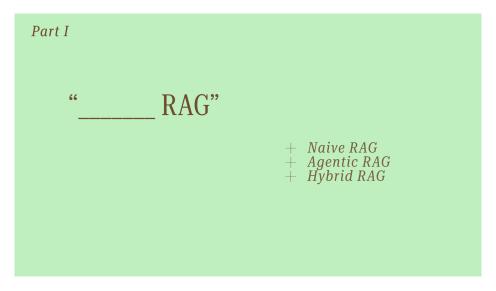
(Timestamp: 02:37)

Naive RAG is better understood as Simple RAG: the foundational approach of searching a vector store with a vector to find similar items.



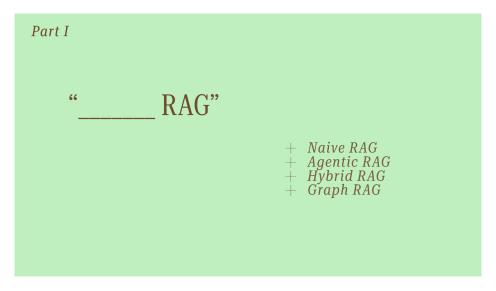
(Timestamp: 04:04)

Agentic RAG involves an LLM choosing how to search, giving the impression that the model can remove the engineer from designing the retrieval pipeline.



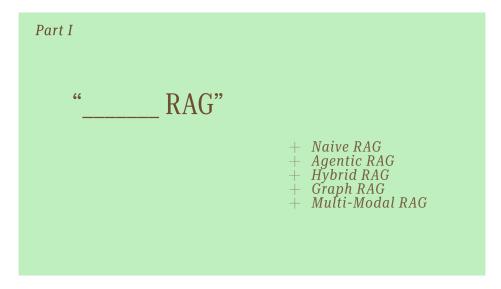
(Timestamp: 04:41)

Hybrid RAG combines Simple RAG with classic retrieval techniques like keyword matching, allowing for searches with multiple signals simultaneously.



(Timestamp: 05:05)

Graph RAG uses the relationships *between* objects to improve retrieval, such as identifying stores that sell "home goods" to find a coffee filter, also considering proximity.



(Timestamp: 06:06)

Multi-Modal RAG has two meanings: searching with multiple data types (text and images) or searching across multiple locations ("modes") within the same latent space for a single item.

5.3 A First-Principles View of RAG

Advanced RAG techniques can be reframed as core engineering pipelines.

(Timestamp: 07:58)

Hypothetical Document Embeddings (HyDE) is a document enrichment pipeline. It uses an LLM to rewrite documents into the language that users are likely to search with. A dense, technical document can be rewritten into a simpler description, creating a new, more searchable "map" of the original.

(Timestamp: 10:14)

Agentic RAG is a **query enrichment pipeline**. When a query is ambiguous, an agent decides how to search. For example, it determines whether "V60 filter" refers to a product or a restaurant, routing the query to the correct search process.

(Timestamp: 11:38)

Rank fusion is multi-stage processing. It involves running multiple different searches and then combining, or "stitching," the results together in a subsequent stage.

5.4 The Three Responsibilities of an IR Engineer

These advanced techniques can be derived by focusing on three core responsibilities.

Part II

— You Could Have Invented ___

The core responsibility of the IR engineer is to understand:

• What is the most likely representation of the user's desire?

(Timestamp: 12:43)

1. **Predict user intent:** What is the most likely representation of what the user is looking for?

Part II

— You Could Have Invented ___

The core responsibility of the IR engineer is to understand:

- What is the most likely representation of the user's desire?
- What representations can you generate ahead of time from the entities?

(Timestamp: 13:08)

2. Generate multiple representations (maps): Create different views of the source data ahead of time (document enrichment).

Part II

— You Could Have Invented ____

The core responsibility of the IR engineer is to understand:

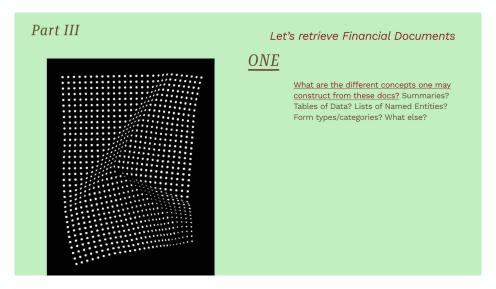
- What is the most likely representation of the user's desire?
- What representations can you generate ahead of time from the entities?
- How can you correctly match these up?

(Timestamp: 13:39)

3. Match intent to representation: Correctly match the user's query with the appropriate pre-generated representation.

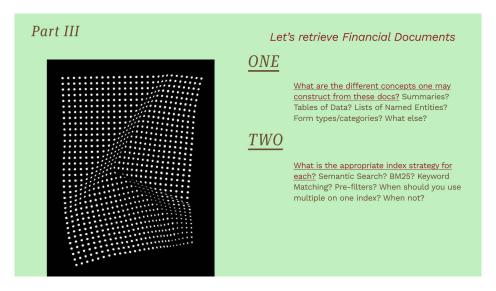
5.5 Practical Application: Curving Space

"Curving space" means shaping data representations and indices to improve search.



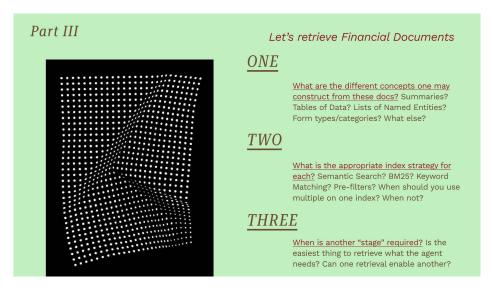
(Timestamp: 13:58)

For financial documents, one could create multiple "maps" from a single corpus, such as summaries, tables of data, lists of named entities, and form types. This is document enrichment.



(Timestamp: 16:34)

Once multiple representations exist, the right indexing strategy must be chosen for each. This involves deciding between semantic search, keyword matching, pre-filters, and whether to use a single index or separate ones.



(Timestamp: 18:08)

Sometimes, a second retrieval step, informed by the first, is required. This is a form of staged processing.

5.6 Agents as Routers

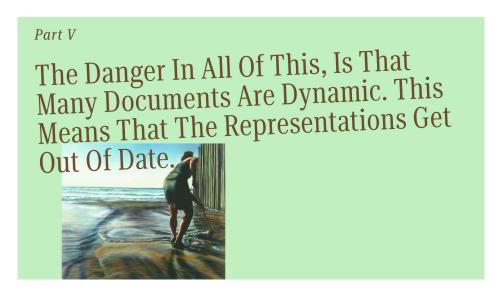
(Timestamp: 18:54)

Agents are **transformers** in their function: they transform incoming data and instructions into a structured output.

(Timestamp: 19:04)

An effective way to use agents is as **routers**. They take incoming data and route it to different indices or subsequent retrieval stages. This is the core idea behind both Agentic RAG and Multi-Agent RAG.

5.7 Dynamic Representations



(Timestamp: 20:51)

A significant danger in RAG is that documents are dynamic. A static embedding will become outdated as the context of a document changes based on new business or world events.

Part V

The Danger In All Of This, Is That Many Documents Are Dynamic. This Means That The Representations Get

The Upshot Here Is That You Need To Design The System To Shard Each Entity In The Easiest Way Possible To Understand What's Changed, And Then Re-Index That Which Has.

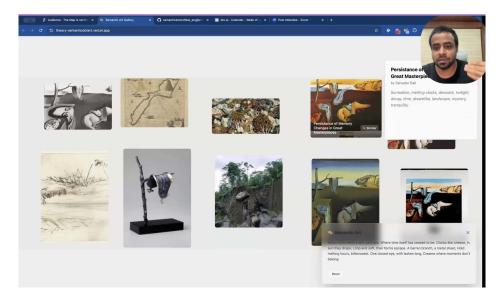
(Timestamp: 22:49)

The solution is to design a system that can detect what has changed and re-index only those parts, requiring an architecture built for dynamic updates.

5.8 Demo: Semantic Dot Art

(Timestamp: 23:21)

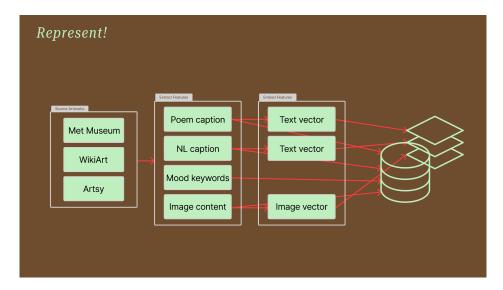
To make these concepts concrete, Ayush Chaurasia demonstrated semanticdotart, an application for discovering artworks. The demo shows how a system can serve diverse user intents by creating and searching over multiple representations of the same underlying data.



A user can search for art using different "maps" of the data. For example, they can search with a literal description ("multiple clocks melting in a desert"), a poetic description, or even a similar image. The system retrieves not only the original artwork but also derivative pieces and other thematically related works. This is made possible by a rich document enrichment pipeline that creates multiple vector and keyword-based indices for each artwork, capturing everything from mood and style to literal object descriptions.

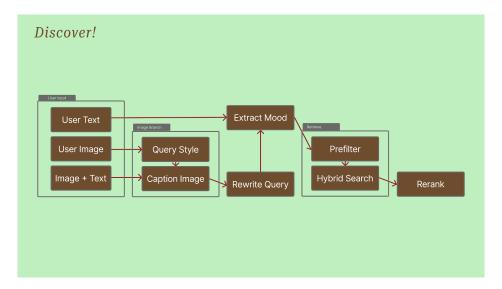
The retrieval process is agentic. The system routes the user's query to the most appropriate index or combination of indices. A poetic query might be routed to an index of artistic descriptions, while an image query would use a multimodal embedding. This dynamic routing, combined with multi-stage processing and rank fusion, allows the system to handle a wide variety of user needs and deliver more satisfying, diverse results.

5.9 System Architecture



(Timestamp: 27:26)

The "Represent!" diagram visualizes the document enrichment pipeline. Data from various sources is processed to extract different features (poem captions, NL captions, mood keywords, image content). These are embedded into different vector types and stored, creating multiple "maps" for the same territory.



(Timestamp: 29:10)

The "Discover!" diagram shows the retrieval pipeline. User input is routed through various stages where it can be enriched (e.g., mood extraction, query rewriting). These enriched queries are then used in a multi-stage retrieval process involving pre-filtering and hybrid search before final reranking.

5.10 Integration with Other Techniques

The multiple representations approach naturally integrates with other advanced RAG techniques:

Reasoning Models are a form of query enrichment, rewriting confusing queries with necessary context.

Late-interaction models like ColBERT create diversity within the model itself by generating multiple representations (a vector for each

token) for a single document. This creates different "modes" in the latent space for more diverse and nuanced search results.

Routing is a retrieval stage where you decide which process or index to use based on the query. For a small number of routes, an LLM can act as a simple classifier. As the number of routes grows, a dedicated, trained classifier becomes more appropriate.

5.11 Chapter Principles

The key insights from this approach:

- No Single Perfect Map: Instead of seeking one perfect representation, build multiple specialized representations of your data
- 2. **Intent-Based Routing**: Use agents or classifiers to route queries to the most appropriate representation
- 3. **Dynamic Updates**: Design systems that can detect changes and re-index incrementally
- 4. Multi-Stage Processing: Combine results from different representations and processing stages
- 5. **Domain Specialization**: Create representations tailored to specific types of queries or user intents

This framework provides a principled way to think about advanced RAG techniques as variations on the theme of multiple representations and intelligent routing.

5.12 Video

Here is the full video:

https://youtu.be/hf9B3knU9vc

6 Context Rot: When Long Context Windows Fail

Based on a presentation by Kelly Hong

Kelly Hong is a researcher at Chroma who investigates how LLMs handle long-context inputs. Despite marketing claims that models with 1M+ token context windows make RAG obsolete, Kelly's research reveals that performance degrades significantly as context length increases—a phenomenon she coined "Context Rot." Her experiments across 18 state-of-the-art models show that simply having information in context isn't enough; how that information is presented matters critically for reliable AI applications.

6.1 Introduction

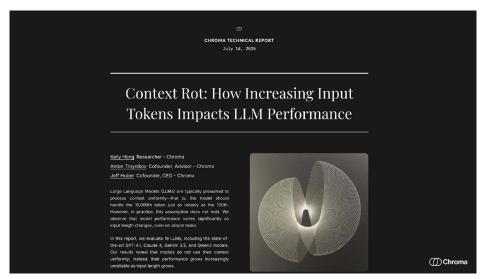


Figure 6.1: Title Slide

(Timestamp: 00:00:00)

This slide introduces the concept of "Context Rot," a term coined by Chroma to describe how an LLM's performance becomes increasingly unreliable as the length of its input context grows. The research evaluates 18 state-of-the-art LLMs and finds that, contrary to the assumption of uniform context processing, performance degrades significantly with longer inputs.

6.2 The Long Context Promise

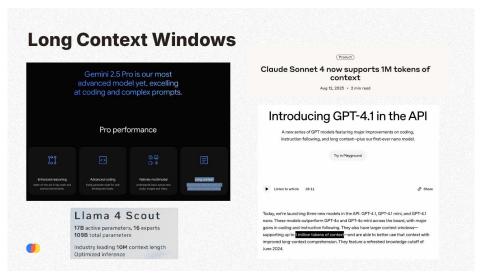


Figure 6.2: The Rise of Long Context Windows

(Timestamp: 01:47)

Major LLM providers prominently advertise massive context windows—often 1 million tokens or more—as a key feature of their frontier models like Gemini, Claude, and GPT-4.1. This marketing suggests that models can effectively process and utilize vast amounts of information.



Figure 6.3: The Common Assumption: More Context is Better

(Timestamp: 02:07)

The availability of large context windows has led to the common assumption that providing more context is always beneficial. This has inspired new use cases, such as large-scale code analysis and extensive document synthesis. Benchmarks like the "needle in a haystack" test, which often show near-perfect retrieval accuracy across the entire context window, appear to reinforce this assumption, creating a potentially misleading picture of model capabilities.

6.3 Limitations of Needle in a Haystack

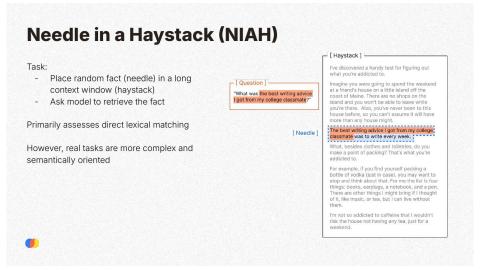


Figure 6.4: Explaining the "Needle in a Haystack" (NIAH) Benchmark

(*Timestamp: 03:33*)

The Needle in a Haystack (NIAH) test is a simple retrieval task where a specific fact (the "needle") is placed within a long document (the "haystack"), and the model is asked to retrieve it. Kelly explains that this benchmark primarily assesses direct **lexical matching**. As seen in the example, the query and the needle share many of the same words ("best writing advice," "college classmate"). This makes the task relatively easy and not representative of real-world scenarios, which often require more complex **semantic** understanding where direct word overlap is minimal.

6.4 Experiment 1: Semantic vs. Lexical Matching

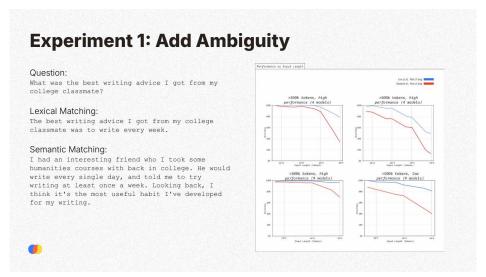


Figure 6.5: Experiment 1: Adding Ambiguity (Semantic vs. Lexical Matching)

(*Timestamp: 04:49*)

To test performance on more realistic tasks, Chroma's first experiment introduced ambiguity. They compared a **lexical matching** task (similar to the original NIAH) with a **semantic matching** task, where the answer contained the same core information but was phrased differently, requiring the model to understand meaning beyond direct word overlap. The results show a clear trend: while performance on lexical matching remains relatively high, performance on the more complex semantic matching task degrades significantly as the input context grows longer.

Figure 6.6: Implications of Ambiguity in Real-World Applications

(Timestamp: 08:08)

This slide illustrates the real-world implications of the previous experiment using a financial report analysis example. A user is unlikely to know the exact phrasing in a document to formulate a perfect lexical query. Instead, they will ask a more ambiguous, semantic question like "How is our overseas expansion going?" This requires the model to connect "overseas expansion" to specific countries and revenue figures. As Experiment 1 showed, this is precisely the kind of task where performance degrades with longer contexts.

6.5 Experiment 2: The Impact of Distractors

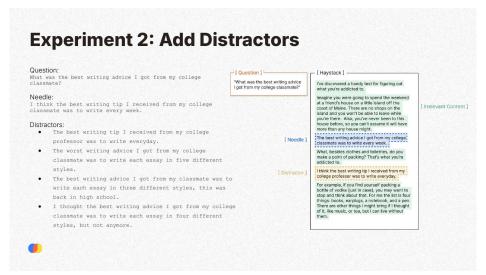


Figure 6.7: Experiment 2: Adding Distractors

(Timestamp: 09:39)

The second experiment investigates how performance is affected by distractors—pieces of information that are semantically similar to the correct answer but are incorrect. In the example, the correct "needle" is writing advice from a "college classmate." The distractors include similar advice from a "college professor" or advice about writing essays in different styles. These distractors mimic the kind of noise often found in real-world documents.

Figure 6.8: Visualizing the Distractor Setup

This slide provides a simple visual model of the experiment. The researchers tested the LLM's performance under three conditions: with no distractors, with one distractor, and with four distractors placed in the context alongside the correct needle.

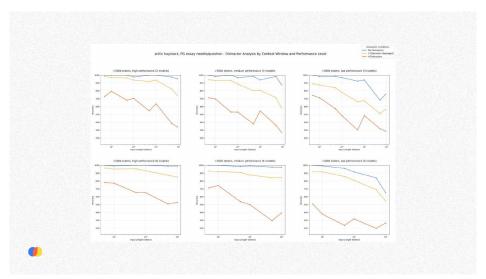


Figure 6.9: Results: Performance Degrades with More Distractors

(Timestamp: 11:00)

The results of the distractor experiment show two clear trends. First, across all model groups, performance degrades as the input length increases. Second, performance also degrades as the number of distractors increases. The combination of long context and distracting information proves particularly challenging for LLMs, causing a significant drop in accuracy.

Figure 6.10: Implications of Distractors in Domain-Specific Contexts

(*Timestamp: 11:43*)

This experiment is highly relevant to real-world applications, especially in domain-specific contexts like finance or law. Documents in these fields often contain highly similar, templated information where only small details (like a year or a name) differ. These similar pieces of information act as natural distractors, making it difficult for the model to retrieve the correct fact, a problem that is exacerbated by longer contexts.

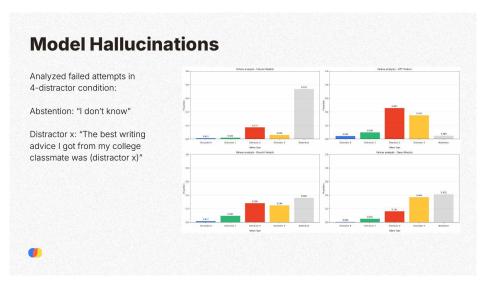


Figure 6.11: Analyzing Failure Modes: Model Hallucinations vs. Abstention

(Timestamp: 12:55)

When the models failed in the 4-distractor condition, the researchers analyzed *how* they failed. A key finding was that models often **hallucinate** by confidently providing an answer based on one of the distractors, rather than **abstaining** (stating "I don't know"). This tendency varies by model family: Claude models are more likely to abstain when uncertain, whereas GPT models have the highest rate of hallucination, confidently returning an incorrect answer.

6.6 Experiment 3: Context Structure Matters

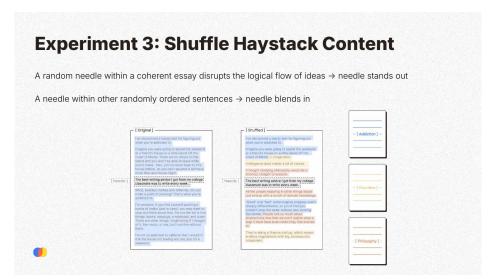


Figure 6.12: Experiment 3: Shuffling Haystack Content

(Timestamp: 14:12)

This experiment tested whether models process context in a structured, order-sensitive manner. A "needle" (a sentence about writing advice) was placed in a coherent essay. Because the needle disrupts the essay's logical flow, it stands out. The same needle was also placed in a "haystack" of randomly shuffled, unrelated sentences, where it should logically blend in more. The hypothesis was that the model would find it easier to retrieve the needle from the coherent essay where it was an anomaly.

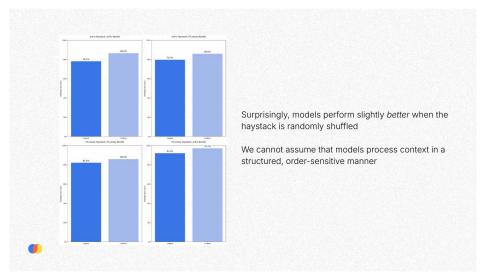


Figure 6.13: Surprising Results: Models Perform Better on Shuffled Context

(Timestamp: 15:34)

Counter-intuitively, the results showed that models performed slightly better when the haystack was randomly shuffled. This surprising finding suggests that LLMs do not necessarily process context in the linear, structured way humans do and that a disruption in logical flow can actually make a key piece of information harder, not easier, to find.

6.7 Experiment 4: Conversational Memory

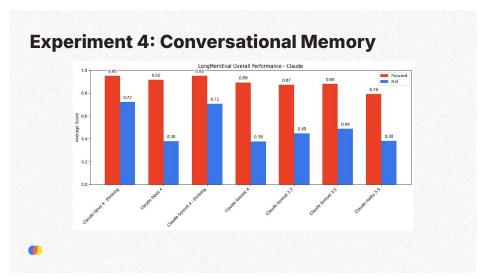


Figure 6.14: Experiment 4: Conversational Memory

(*Timestamp: 17:54*)

This experiment tested conversational memory using the LongMemEval benchmark. Models were tested under two conditions: a "focused" condition with only the relevant conversational history (around 100 tokens), and a "full" condition where the context was padded with irrelevant conversations up to 120k tokens. The results clearly show that all Claude models perform significantly better in the focused condition, demonstrating that irrelevant information degrades performance quickly.

6.8 Experiment 5: Simple Tasks Aren't Immune

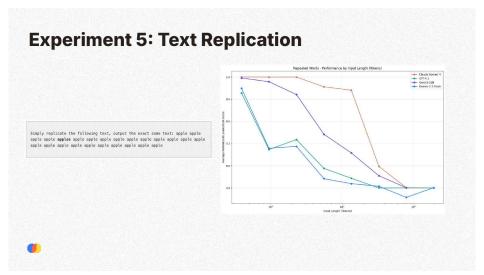


Figure 6.15: Experiment 5: Text Replication Task

(Timestamp: 19:20)

This experiment involved a very simple task: replicating a given text of repeated words. Despite the simplicity, all models showed a significant drop in performance as the input length increased. Some models exhibited strange failure modes; for example, at long input lengths, Claude models would refuse to generate the output, citing concerns about copyrighted material, while Gemini models would produce completely random outputs.

6.9 Key Takeaways

Takeaways Models do not have uniform performance across input lengths, even for very simple tasks Even if you have the right information in context, how you present it matters Context engineering is critical

Figure 6.16: Key Takeaways

(Timestamp: 20:15)

The research provides three takeaways:

- 1. LLM performance is not uniform across input lengths, even for simple tasks.
- 2. Simply having the right information in the context is not enough; how that information is presented matters significantly.
- 3. As a result, thoughtful **context engineering** is critical for building reliable AI applications.

6.10 Practical Solutions: Context Engineering

Context Engineering Example

Use case: coding agent with a long-running task

Naive approach: append conversation history with each tool call/turn, keeping everything in context

- Includes every tool call made and output
- Context grows quickly

Better approach: break down task into subtasks, use subagents for each

- Main "orchestrator" agent creates a plan of subtasks, spawns subagents
- Each subagent has its own context, returns most relevant information to orchestrator agent
- Orchestrator agent keeps the most relevant information

Figure 6.17: Context Engineering Example: Orchestrator and Subagents

(Timestamp: 21:07)

Kelly provides a practical example of context engineering for a coding agent with a long-running task.

- Naive Approach: Append the entire conversation history, including every tool call and output, to the context. This causes the context to grow quickly and become bloated with irrelevant information (e.g., the full content of a file read), leading to context rot.
- Better Approach: Use a main "orchestrator" agent that breaks the task into subtasks and spawns "subagents" for each one. Each subagent operates with its own clean, focused context. It completes its subtask and returns only the most relevant information to the orchestrator, which maintains a concise, filtered history. This prevents context overload and improves reliability.

6.11 Further Resources

Figure 6.18: Further Reading

(Timestamp: 22:47)

The presentation concludes by directing the audience to the full technical report and other related research on Chroma's website, research.trychroma.com.

6.12 Q&A Session

• Is the Needle in a Haystack (NIAH) benchmark pointless? (*Timestamp: 06:54*) It's not pointless, but its utility has diminished. It was useful for evaluating older models, which did show performance degradation on the task. However, modern

frontier models can now perform very well on this simple, lexicallydriven task, which makes the benchmark unrepresentative of realworld use cases that require deeper semantic reasoning.

- Did the research find that one model consistently resists context rot better than others across all tasks? (Timestamp: 23:57) No, performance was "all over the place" and highly task-dependent. There was no single model that ranked first across all experiments. For example, Claude Sonnet 4 performed best on the repeated words task, while GPT-4.1 was the top performer on the Needle in a Haystack task. Each model has different strengths, and no model currently excels at all long-context tasks.
- What is your advice for developers trying to find and mitigate context rot in their applications? (Timestamp: 27:32) Start by qualitatively analyzing your system. Run a few examples with both short, focused context and long context bloated with irrelevant information. Compare the outputs: what did the model miss with the long context? What irrelevant information could be removed? There's no single, generalizable solution, as optimal context engineering is highly application-dependent. A good starting point is to carefully examine the data you're providing to the model and how you can make it more concise and relevant.
- Prior research found a U-shaped retrieval curve, where information at the very beginning and very end of the context is recalled best. Does that still hold true? (Timestamp: 29:06) In Chroma's experiments, they did not observe this U-shaped pattern. They tested placing the "needle" at various positions throughout the context—from the beginning to the middle to the end—and found no consistent performance advantage for any particular position. While putting important information at the start or end is a common piece of advice, this

research suggests it may not be a reliable solution for mitigating context rot.

Conclusion

The field of RAG has evolved far beyond the simple "embed documents and search" approach that dominated 2023. Through these five expert presentations, we've explored the cutting-edge techniques that are reshaping how we build production-ready retrieval systems.

Key Takeaways

RAG's Evolution: Ben Clavié showed us that RAG isn't dead—it's simply evolving. The naive single-vector approach has given way to sophisticated retrieval strategies that combine multiple techniques and leverage the full power of modern language models.

Better Evaluation: Nandan Thakur demonstrated that traditional IR metrics are insufficient for RAG systems. Modern benchmarks like FreshStack evaluate diversity, grounding, and coverage—not just relevance—reflecting the complex evidence-gathering needs of LLM-powered applications.

Reasoning Integration: Orion Weller's work on Promptriever and Rank1 showed how instruction-following and reasoning capabilities can be embedded directly into retrieval models, enabling systems that understand nuanced queries and can adapt their behavior through natural language.

Late Interaction Models: Antoine Chaffin explained how ColBERT and similar approaches solve the fundamental information loss problem

of single-vector search by maintaining token-level representations, leading to superior performance on challenging tasks.

Multiple Representations: Bryan Bischof and Ayush Chaurasia's framework revealed that the best retrieval systems don't seek a single perfect representation but instead create multiple specialized "maps" of the same data, using intelligent routing to serve diverse user intents.

Looking Forward

These advances represent a fundamental shift in how we think about retrieval. Rather than trying to compress all information into a single vector, we're moving toward systems that:

- Maintain rich, multi-faceted representations of data
- Understand and follow complex instructions
- Reason about relevance and user intent
- Adapt their behavior based on context
- Combine classical and modern techniques intelligently

The tooling ecosystem is rapidly maturing with libraries like PyLate, frameworks like RAGatouille, and growing vector database support for advanced retrieval methods.

Resources

Watch the full presentations: - Ben Clavié: "I don't use RAG, I just retrieve documents" - Nandan Thakur: "Modern IR Evaluation for RAG" - Orion Weller: "Reasoning and Retrieval" - Antoine Chaffin: "Late Interaction Models" - Bryan Bischof & Ayush Chaurasia: "Multiple Representations"

Web version: You can also explore the interactive web version of this series at hamel.dev/notes/llm/rag/not_dead.html.

These insights come from our comprehensive AI Evals course, where we teach engineers and product managers how to build robust evaluation systems for AI applications. The course covers not only RAG evaluation but the complete spectrum of LLM evaluation techniques. Readers of this handbook can access the course with a 35% discount.

The future of RAG is bright, and these techniques provide the foundation for building the next generation of intelligent information systems.