Frequently Asked Questions (And Answers)

About Al Evals

Hamel Husain Shreya Shankar
2025-07-31

Contents

Listen to the audio version of this FAQ

Getting Started & Fundamentals
Q: What are LLM Evals?
Q: What is a trace? L
Q: What’s a minimum viable evaluation setup?

Error Analysis & Data Collection

O W w W

ot

: Why is "error analysis” so important in LLM evals, and how is it performed?
: How do I surface problematic traces for review beyond user feedback?
: How often should I re-run error analysis on my production system?

: Are there scenarios where synthetic data may not be reliable?
: How do I approach evaluation when my system handles diverse user queries? . . .
: How can I efficiently sample production traces for review?

O0L0L0L0LD
=
®
-+
o
+
=
@
o
[¢]
n
-+
o
=
s
=
S
®
o
=
g
=
02
[¢]
5
)
=
Y
[
5
i
n
<
S
+
=
[}
=5
o
o
®
-+
&
-~

Evaluation Design & Methodology

Q: Why do you recommend binary (pass/fail) evaluations instead of 1-5 ratings (Lik-
ert scales)? ...

Q: Should I build automated evaluators for every failure mode I find?
Q: Should I use "ready-to-use” evaluation metrics?
Q: Are similarity metrics (BERTScore, ROUGE, etc.) useful for evaluating LLM

O ©O© o &

AT Evals Course: 35% off at bit.ly/evals-ai

Q: Can I use the same model for both the main task and evaluation? 15
Human Annotation & Process 16
Q: How many people should annotate my LLM outputs? 16
Q: Should product managers and engineers collaborate on error analysis? How? 16
Q: Should I outsource annotation & labeling to a third party? 17
Q: What parts of evals can be automated with LLMs? 19
Q: Should I stop writing prompts manually in favor of automated tools? 20
Tools & Infrastructure 21
Q: Should I build a custom annotation tool or use something off-the-shelf? 21
Q: What makes a good custom interface for reviewing LLM outputs? 21
Q: What gaps in eval tooling should I be prepared to fill myself? 25
Q: Seriously Hamel. Stop the bullshit. What’s your favorite eval vendor? 27
Production & Deployment 27
Q: How are evaluations used differently in CI/CD vs. monitoring production? 27
Q: What’s the difference between guardrails & evaluators? 28
Q: Can my evaluators also be used to automatically fix or correct outputs in production? 28
Q: How much time should I spend on model selection? 29
Domain-Specific Applications 29
Q: Is RAG dead? e 29
Q: How should I approach evaluating my RAG system? 30
Q: How do I choose the right chunk size for my document processing tasks? 31
Q: How do I debug multi-turn conversation traces? 33
Q: How do I evaluate sessions with human handoffs? 34
Q: How do I evaluate complex multi-step workflows? 34
Q: How do I evaluate agentic workflows? 34

This document curates the most common questions Shreya and I received while teaching 700+
engineers & PMs Al Evals. Warning: These are sharp opinions about what works in most
cases. They are not universal truths. Use your judgment.

If you want to learn more about AI Evals, check out our AI Evals course. Here
is a 35% discount code for readers.

https://bit.ly/evals-ai
https://bit.ly/evals-ai
https://bit.ly/evals-ai
https://bit.ly/evals-ai

AT Evals Course: 35% off at bit.ly/evals-ai

Listen to the audio version of this FAQ

If you prefer to listen to the audio version (narrated by AI), you can play it here.

Getting Started & Fundamentals

Q: What are LLM Evals?
If you are completely new to product-specific LLM evals (not foundation model benchmarks),
see these posts: part 1, part 2 and part 3. Otherwise, keep reading.

Focus view

Q: What is a trace?

A trace is the complete record of all actions, messages, tool calls, and data retrievals from
a single initial user query through to the final response. It includes every step across all
agents, tools, and system components in a session: multiple user messages, assistant responses,
retrieved documents, and intermediate tool interactions.

Note on terminology: Different observability vendors use varying definitions of traces and
spans. Alex Strick van Linschoten’s analysis highlights these differences (screenshot below):

https://bit.ly/evals-ai
https://soundcloud.com/hamel-husain/llm-evals-faq
../../../blog/posts/evals/index.qmd
../../../blog/posts/llm-judge/index.qmd
../../../blog/posts/field-guide/index.qmd
../../../blog/posts/evals-faq/what-are-llm-evals.html
https://mlops.systems/posts/2025-06-04-instrumenting-an-agentic-app-with-arize-phoenix-and-litellm.html#llm-tracing-tools-naming-conventions-june-2025

AT Evals Course: 35% off at bit.ly/evals-ai

LLM Tracing Tools’ Naming Conventions (June 2025)

Provider Higher-level 1st level child Leaf / atomic unit Notes
object
Arize Phoenix Trace Span https://arize.com/docs/phoenix/tracing/
ncepts-tracing/what-are-traces

Braintrust Project Trace Span

Datadog Trace Span

Evidently Tracely Trace Span : i i
tracing_overview#trace-view

Helicone Segment Session Request https: .helicone.ai/f ion:

HoneyHive Project Session Event https://docs.honeyhive.ai/concepts

Langfuse Session Trace Span “Project” abstraction also available above
Session

LangSmith Project Trace Run https://docs.smith.langchain.com/reference/
data formats/run data format

Lunary Trace Run https://docs.lunary.ai’docs/more/concepts

MLflow Experiment Trace Span s/fmiflow. t: ing/tracing-
schema

OpenLLMetry Workflow / Task Trace Span : traceloop.com/! nll

(Traceloop) tracing/annotations

Opik (CometML) Project Trace Span 2
log traces

W&B Weave Project Trace Call 0OG wandb ‘run’ abstraction also available to
you (above Trace)

Figure 1: Vendor differences in trace definitions as of 2025-07-02

Focus view

Q: What’s a minimum viable evaluation setup?

Start with error analysis, not infrastructure. Spend 30 minutes manually reviewing 20-50 LLM
outputs whenever you make significant changes. Use one domain expert who understands your
users as your quality decision maker (a “benevolent dictator”).

If possible, use notebooks to help you review traces and analyze data. In our opinion, this
is the single most effective tool for evals because you can write arbitrary code, visualize data,
and iterate quickly. You can even build your own custom annotation interface right inside
notebooks, as shown in this video.

Focus view

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/what-is-a-trace.html
https://youtu.be/aqKUwPKBkB0?si=5KDmMQnRzO_Ce9xH
../../../blog/posts/evals-faq/whats-a-minimum-viable-evaluation-setup.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: How much of my development budget should | allocate to evals?

It’s important to recognize that evaluation is part of the development process rather than a
distinct line item, similar to how debugging is part of software development.

You should always be doing error analysis. When you discover issues through error analysis,
many will be straightforward bugs you’ll fix immediately. These fixes don’t require separate
evaluation infrastructure as they’re just part of development.

The decision to build automated evaluators comes down to cost-benefit analysis. If you can
catch an error with a simple assertion or regex check, the cost is minimal and probably worth
it. But if you need to align an LLM-as-judge evaluator, consider whether the failure mode
warrants that investment.

In the projects we’ve worked on, we’ve spent 60-80% of our development time on error
analysis and evaluation. Expect most of your effort to go toward understanding failures
(i.e. looking at data) rather than building automated checks.

Be wary of optimizing for high eval pass rates. If you're passing 100% of your evals, you're
likely not challenging your system enough. A 70% pass rate might indicate a more meaningful
evaluation that’s actually stress-testing your application. Focus on evals that help you catch
real issues, not ones that make your metrics look good.

Focus view

Q: Will today’s evaluation methods still be relevant in 5-10 years given how fast
Al is changing?

Yes. Even with perfect models, you still need to verify they’re solving the right problem.
The need for systematic error analysis, domain-specific testing, and monitoring will still be
important.

Today’s prompt engineering tricks might become obsolete, but you’ll still need to understand
failure modes. Additionally, a LLM cannot read your mind, and research shows that people
need to observe the LLM’s behavior in order to properly externalize their requirements.

For deeper perspective on this debate, see these two viewpoints: “The model is the product”
versus “The model is NOT the product”.

Focus view

https://bit.ly/evals-ai
https://www.youtube.com/watch?v=qH1dZ8JLLdU
https://ai-execs.com/2_intro.html#a-case-study-in-misleading-ai-advice
../../../blog/posts/evals-faq/how-much-of-my-development-budget-should-i-allocate-to-evals.html
https://arxiv.org/abs/2404.12272
https://m.youtube.com/watch?si=qknrtQeITqJ7VsJH&v=4dUFIRj-BWo&feature=youtu.be
https://www.youtube.com/watch?v=EEw2PpL-_NM
../../../blog/posts/evals-faq/will-these-evaluation-methods-still-be-relevant-in-5-10-years-given-how-fast-ai-is-changing.html

AT Evals Course: 35% off at bit.ly/evals-ai

Error Analysis & Data Collection

Q: Why is "error analysis” so important in LLM evals, and how is it performed?

FError analysis is the most important activity in evals. Error analysis helps you decide
what evals to write in the first place. It allows you to identify failure modes unique to your
application and data. The process involves:

1. Creating a Dataset

Gathering representative traces of user interactions with the LLM. If you do not have any
data, you can generate synthetic data to get started.

2. Open Coding

Human annotator(s) (ideally a benevolent dictator) review and write open-ended notes about
traces, noting any issues. This process is akin to “journaling” and is adapted from qualitative
research methodologies. When beginning, it is recommended to focus on noting the first failure
observed in a trace, as upstream errors can cause downstream issues, though you can also tag
all independent failures if feasible. A domain expert should be performing this step.

3. Axial Coding

Categorize the open-ended notes into a “failure taxonomy.”. In other words, group similar
failures into distinct categories. This is the most important step. At the end, count the
number of failures in each category. You can use a LLM to help with this step.

4. lterative Refinement

Keep iterating on more traces until you reach theoretical saturation, meaning new traces do
not seem to reveal new failure modes or information to you. As a rule of thumb, you should
aim to review at least 100 traces.

You should frequently revisit this process. There are advanced ways to sample data more
efficiently, like clustering, sorting by user feedback, and sorting by high probability failure
patterns. Over time, you’ll develop a “nose” for where to look for failures in your data.

Do not skip error analysis. It ensures that the evaluation metrics you develop are supported by
real application behaviors instead of counter-productive generic metrics (which most platforms
nudge you to use). For examples of how error analysis can be helpful, see this video, or this
blog post.

https://bit.ly/evals-ai
https://hamel.dev/blog/posts/llm-judge/#step-1-find-the-principal-domain-expert
https://delvetool.com/blog/theoreticalsaturation
how-can-i-efficiently-sample-production-traces-for-review.html
how-can-i-efficiently-sample-production-traces-for-review.html
https://www.youtube.com/watch?v=e2i6JbU2R-s
https://hamel.dev/blog/posts/field-guide/

AT Evals Course: 35% off at bit.ly/evals-ai

Here is a visualization of the error analysis process by one of our students, Pawel Huryn -
including how it fits into the overall evaluation process:

https://bit.ly/evals-ai
https://www.linkedin.com/in/pawel-huryn/

AT Evals Course: 35% off at bit.ly/evals-ai

Generic metrics like “Helpfulness”

Application-specific metrics

Generic Al Metrics Don't Work

Gl Generic metrics, such as “hallucination” or “toxicity”
often miss domain-specific issues. Their abuse is
endemic in the industry. The most successful teams
look at data, identify failure modes, and let app-specific
metrics emerge bottom-up.

Hamel Husain and Shreya Shankar
ML Engineers, 25+ years of experience
building & evaluating Al systems.

How to Perform Error Analysis

Error analysis is the highest ROl Al engineering activity. You
analyze LLM traces - full records of the pipeline execution:
user query, input, reasoning, tool calls, and the output.
1
Add New Traces
(Real or Synthetic)

Read And Open

Code Traces

Theoretical saturation: Repeat
until no new failure modes & no
changes in re-coding appear

Re-Code Traces Axial Coding:

Refine Failure Modes

With Failure Modes

'« As arule of thumb, you need ~100 high-quality, diverse traces.
== Those can be real data, synthetic data, or both coded with
pass/fail and failure modes.

Step 2: Read and Open Code Traces

Open Coding: Write brief, descriptive notes with problems,
surprises, and incorrect behaviors.

Trace O1: Trace 02: Trace 03: Trace 4:
Bullet Formatting The tool I noticed
points error doesn’t exist that LLM

formatting hallucinates

L e o e e e e e e e

Step 3: Axial Coding, Refine Failure Modes

Cluster similar notes and let failure modes (error categories)
naturally emerge. If you use an LLM, always review its output.

3 4 5

T T P

Step 4: Re-Code Traces With Failure Modes

Go back and label traces with new failure modes. With more
traces, you'll refine definitions and merge or split categories.

Request Response Result Failure mode
Our company (.} Here’saplan(..) Fail Invalid request categorization w
Do you reme (...) Imsorry (...) Fail Reguest shouldn't be rejected W
My name is (...) Information (...) Fail Invalid request categorization W

P L Ll e e e e e e e e]

Step 1: (Optional) Generate Synthetic Traces

ﬂ Don't generate synthetic data without hypotheses about where
Al might fail. You can build intuition by using the product.
Involve domain experts, especially in complex domains.

Synthetic Queries Generation Example: Finance Chatbot

[Prerequisite: Start by defining at

1 least 3 dimensions that represent Persona
i+ where the app is likely to fail K
i PP y Complex query Use case

[Generate Tuples: Generate 10-20

Three dimensions:

- : : Three tuples:
random combinations (tuples) 4 Business 4 Credit line -
[] Human Review: Remove H RSOl 4 Mortedee oW
P , S 4+ Person 4 Credit card Med.
! duplicates, unrealistic combos
¥ < Two synthetic queries:
U Generate Queries: Generate a Our company is looking for a credit
i natural language query for each line up to $250K. We're not your
i L customer. What should we do?
| tuple
- I'd like to take a mortgage. I'm
[J Human Review: Discard awkward single with high income. | found a

e ¢ . What's next?
or unrealistic queries otse WIORS Dekt

Focus view

Decide What to Measure With Automated Evals

Once you perform initial error analysis, you can implement automated
evaluators for single failure modes - each evaluating a single metric.

01. Start With Analyzing Failure Type

a Specification Failure 85 Generalization Failure
« Your instructions were odo .
unclear or incomplete
+ Fix the prompt first. Don't
build an evaluator yet

02. Consider Two Types of App-Specific Evaluators

4 I) Code-Based Evals LLM-as-Judge Evals
* Logic you write (e.g., Python) .

* Objective, rule-based checks .

.

.

LLM fails to apply clear
instructions correctly
These are candidates for
automated evaluators

Complex or subjective checks
Uses another LLM as judge
Asingle, narrow failure mode
Start with binary checks

such as XML, SQL, Regex
* Fast, cheap, deterministic

It’s critical to align LLM-as-Judge evals with human experts. Measure:
= TPR (True Positive Rate) - the most impactful metric to max. alignment
= TNR (True Negative Rate) - helpful metric

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/why-is-error-analysis-so-important-in-llm-evals-and-how-is-it-performed.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: How do | surface problematic traces for review beyond user feedback?

While user feedback is a good way to narrow in on problematic traces, other methods are also
useful. Here are three complementary approaches:

Start with random sampling

The simplest approach is reviewing a random sample of traces. If you find few issues, escalate
to stress testing: create queries that deliberately test your prompt constraints to see if the Al
follows your rules.

Use evals for initial screening

Use existing evals to find problematic traces and potential issues. Once you’ve identified these,
you can proceed with the typical evaluation process starting with error analysis.

Leverage efficient sampling strategies

For more sophisticated trace discovery, use outlier detection, metric-based sorting, and strat-
ified sampling to find interesting traces. Generic metrics can serve as exploration signals to
identify traces worth reviewing, even if they don’t directly measure quality.

Focus view

Q: How often should | re-run error analysis on my production system?

Re-run error analysis when making significant changes: new features, prompt updates, model
switches, or major bug fixes. A useful heuristic is to set a goal for reviewing at least 100+
fresh traces each review cycle. Typical review cycles we’ve seen range from 2-4 weeks. See this
FAQ on how to sample traces effectively.

Between major analyses, review 10-20 traces weekly, focusing on outliers: unusually long con-
versations, sessions with multiple retries, or traces flagged by automated monitoring. Adjust
frequency based on system stability and usage growth. New systems need weekly analysis
until failure patterns stabilize. Mature systems might need only monthly analysis unless usage
patterns change. Always analyze after incidents, user complaint spikes, or metric drift. Scaling
usage introduces new edge cases.

Focus view

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/how-do-i-surface-problematic-traces-for-review-beyond-user-feedback.html
../../../blog/posts/evals-faq/how-often-should-i-re-run-error-analysis-on-my-production-system.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: What is the best approach for generating synthetic data?

A common mistake is prompting an LLM to "give me test queries" without structure,
resulting in generic, repetitive outputs. A structured approach using dimensions produces far
better synthetic data for testing LLM applications.

Start by defining dimensions: categories that describe different aspects of user queries.
Each dimension captures one type of variation in user behavior. For example:

 For a recipe app, dimensions might include Dietary Restriction (vegan, gluten-free, none),
Cuisine Type (Italian, Asian, comfort food), and Query Complexity (simple request,
multi-step, edge case).

o For a customer support bot, dimensions could be Issue Type (billing, technical, general),
Customer Mood (frustrated, neutral, happy), and Prior Context (new issue, follow-up,
resolved).

Start with failure hypotheses. If you lack intuition about failure modes, use your appli-
cation extensively or recruit friends to use it. Then choose dimensions targeting those likely
failures.

Create tuples manually first: Write 20 tuples by hand—specific combinations selecting one
value from each dimension. Example: (Vegan, Italian, Multi-step). This manual work helps
you understand your problem space.

Scale with two-step generation:

1. Generate structured tuples: Have the LLM create more combinations like (Gluten-
free, Asian, Simple)

2. Convert tuples to queries: In a separate prompt, transform each tuple into natural
language

This separation avoids repetitive phrasing. The (Vegan, Italian, Multi-step) tuple becomes: "I
need a dairy-free lasagna recipe that I can prep the day before."

Generation approaches

You can generate tuples two ways:

Cross product then filter: Generate all dimension combinations, then filter with an LLM.
Guarantees coverage including edge cases. Use when most combinations are valid.

Direct LLM generation: Ask the LLM to generate tuples directly. More realistic but tends
toward generic outputs and misses rare scenarios. Use when many dimension combinations
are invalid.

10

https://bit.ly/evals-ai

AT Evals Course: 35% off at bit.ly/evals-ai

Fix obvious problems first: Don’t generate synthetic data for issues you can fix immediately.
If your prompt doesn’t mention dietary restrictions, fix the prompt rather than generating
specialized test queries.

After iterating on your tuples and prompts, run these synthetic queries through your
actual system to capture full traces. Sample 100 traces for error analysis. This num-
ber provides enough traces to manually review and identify failure patterns without being
overwhelming.

Focus view

Q: Are there scenarios where synthetic data may not be reliable?

Yes: synthetic data can mislead or mask issues. For guidance on generating synthetic data
when appropriate, see What is the best approach for generating synthetic data?

Common scenarios where synthetic data fails:

1. Complex domain-specific content: LLMs often miss the structure, nuance, or quirks
of specialized documents (e.g., legal filings, medical records, technical forms). Without
real examples, critical edge cases are missed.

2. Low-resource languages or dialects: For low-resource languages or dialects, LLM-
generated samples are often unrealistic. Evaluations based on them won’t reflect actual
performance.

3. When validation is impossible: If you can’t verify synthetic sample realism (due
to domain complexity or lack of ground truth), real data is important for accurate
evaluation.

4. High-stakes domains: In high-stakes domains (medicine, law, emergency response),
synthetic data often lacks subtlety and edge cases. Errors here have serious consequences,
and manual validation is difficult.

5. Underrepresented user groups: For underrepresented user groups, LLMs may mis-
represent context, values, or challenges. Synthetic data can reinforce biases in the train-
ing data of the LLM.

Focus view

11

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/what-is-the-best-approach-for-generating-synthetic-data.html
../../../blog/posts/evals-faq/are-there-scenarios-where-synthetic-data-may-not-be-reliable.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: How do | approach evaluation when my system handles diverse user queries?

Complex applications often support vastly different query patterns—from “What’s
the return policy?” to “Compare pricing trends across regions for products match-
ing these criteria.” Each query type exercises different system capabilities, leading
to confusion on how to design eval criteria.

Error Analysis is all you need. Your evaluation strategy should emerge from observed
failure patterns (e.g. error analysis), not predetermined query classifications. Rather than
creating a massive evaluation matrix covering every query type you can imagine, let your
system’s actual behavior guide where you invest evaluation effort.

During error analysis, you’ll likely discover that certain query categories share failure patterns.
For instance, all queries requiring temporal reasoning might struggle regardless of whether
they’re simple lookups or complex aggregations. Similarly, queries that need to combine
information from multiple sources might fail in consistent ways. These patterns discovered
through error analysis should drive your evaluation priorities. It could be that query category
is a fine way to group failures, but you don’t know that until you’ve analyzed your data.

To see an example of basic error analysis in action, see this video.

Focus view

Q: How can | efficiently sample production traces for review?

It can be cumbersome to review traces randomly, especially when most traces don’t have an
error. These sampling strategies help you find traces more likely to reveal problems:

o Outlier detection: Sort by any metric (response length, latency, tool calls) and review
extremes.

e User feedback signals: Prioritize traces with negative feedback, support tickets, or
escalations.

e« Metric-based sorting: Generic metrics can serve as exploration signals to find interest-
ing traces. Review both high and low scores and treat them as exploration clues. Based
on what you learn, you can build custom evaluators for the failure modes you find.

o Stratified sampling: Group traces by key dimensions (user type, feature, query cate-
gory) and sample from each group.

¢ Embedding clustering: Generate embeddings of queries and cluster them to reveal
natural groupings. Sample proportionally from each cluster, but oversample small clus-
ters for edge cases. There’s no right answer for clustering—it’s an exploration technique
to surface patterns you might miss manually.

12

https://bit.ly/evals-ai
https://youtu.be/e2i6JbU2R-s?si=8p5XVxbBiioz69Xc
https://youtu.be/e2i6JbU2R-s?si=8p5XVxbBiioz69Xc
../../../blog/posts/evals-faq/how-do-i-approach-evaluation-when-my-system-handles-diverse-user-queries.html

AT Evals Course: 35% off at bit.ly/evals-ai

As you get more sophisticated with how you sample, you can incorporate these tactics into
the design of your annotation tools.

Focus view

Evaluation Design & Methodology

Q: Why do you recommend binary (pass/fail) evaluations instead of 1-5 ratings
(Likert scales)?

Engineers often believe that Likert scales (1-5 ratings) provide more information
than binary evaluations, allowing them to track gradual improvements. However,
this added complexity often creates more problems than it solves in practice.

Binary evaluations force clearer thinking and more consistent labeling. Likert scales introduce
significant challenges: the difference between adjacent points (like 3 vs 4) is subjective and
inconsistent across annotators, detecting statistical differences requires larger sample sizes, and
annotators often default to middle values to avoid making hard decisions.

Having binary options forces people to make a decision rather than hiding uncertainty in
middle values. Binary decisions are also faster to make during error analysis - you don’t waste
time debating whether something is a 3 or 4.

For tracking gradual improvements, consider measuring specific sub-components with their
own binary checks rather than using a scale. For example, instead of rating factual accuracy
1-5, you could track “4 out of 5 expected facts included” as separate binary checks. This
preserves the ability to measure progress while maintaining clear, objective criteria.

Start with binary labels to understand what ‘bad’ looks like. Numeric labels are advanced and
usually not necessary.

Focus view

Q: Should | practice eval-driven development?

Generally no. Eval-driven development (writing evaluators before implementing features)
sounds appealing but creates more problems than it solves. Unlike traditional software where
failure modes are predictable, LLMs have infinite surface area for potential failures. You can’t
anticipate what will break.

A better approach is to start with error analysis. Write evaluators for errors you discover,
not errors you imagine. This avoids getting blocked on what to evaluate and prevents wasted
effort on metrics that have no impact on actual system quality.

13

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/how-can-i-efficiently-sample-production-traces-for-review.html
../../../blog/posts/evals-faq/why-do-you-recommend-binary-passfail-evaluations-instead-of-1-5-ratings-likert-scales.html

AT Evals Course: 35% off at bit.ly/evals-ai

Exception: Eval-driven development may work for specific constraints where you know ex-
actly what success looks like. If adding “never mention competitors,” writing that evaluator
early may be acceptable.

Most importantly, always do a cost-benefit analysis before implementing an eval. Ask whether
the failure mode justifies the investment. Error analysis reveals which failures actually matter
for your users.

Focus view

Q: Should | build automated evaluators for every failure mode | find?

Focus automated evaluators on failures that persist after fixing your prompts. Many teams
discover their LLM doesn’t meet preferences they never actually specified - like wanting short
responses, specific formatting, or step-by-step reasoning. Fix these obvious gaps first before
building complex evaluation infrastructure.

Consider the cost hierarchy of different evaluator types. Simple assertions and reference-
based checks (comparing against known correct answers) are cheap to build and maintain.
LLM-as-Judge evaluators require 100+ labeled examples, ongoing weekly maintenance, and
coordination between developers, PMs, and domain experts. This cost difference should shape
your evaluation strategy.

Only build expensive evaluators for problems you’ll iterate on repeatedly. Since LLM-as-Judge
comes with significant overhead, save it for persistent generalization failures - not issues you
can fix trivially. Start with cheap code-based checks where possible: regex patterns, structural
validation, or execution tests. Reserve complex evaluation for subjective qualities that can’t
be captured by simple rules.

Focus view

Q: Should | use "ready-to-use” evaluation metrics?
No. Generic evaluations waste time and create false confidence. (Unless you're using
them for exploration).

One instructor noted:

“All you get from using these prefab evals is you don’t know what they actually
do and in the best case they waste your time and in the worst case they create an
illusion of confidence that is unjustified.”!

!Eleanor Berger, our wonderful TA.

14

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/should-i-practice-eval-driven-development.html
../../../blog/posts/evals-faq/should-i-build-automated-evaluators-for-every-failure-mode-i-find.html
https://www.linkedin.com/in/intellectronica/

AT Evals Course: 35% off at bit.ly/evals-ai

Generic evaluation metrics are everywhere. Eval libraries contain scores like helpfulness, coher-
ence, quality, etc. promising easy evaluation. These metrics measure abstract qualities that
may not matter for your use case. Good scores on them don’t mean your system works.

Instead, conduct error analysis to understand failures. Define binary failure modes based on
real problems. Create custom evaluators for those failures and validate them against human
judgment. Essentially, the entire evals process.

Experienced practitioners may still use these metrics, just not how you’d expect. As Picasso
said: “Learn the rules like a pro, so you can break them like an artist.” Once you understand
why generic metrics fail as evaluations, you can repurpose them as exploration tools to find
interesting traces (explained in the next FAQ).

Focus view

Q: Are similarity metrics (BERTScore, ROUGE, etc.) useful for evaluating LLM
outputs?

Generic metrics like BERTScore, ROUGE, cosine similarity, etc. are not useful for evaluating
LLM outputs in most Al applications. Instead, we recommend using error analysis to identify
metrics specific to your application’s behavior. We recommend designing binary pass/fail.)
evals (using LLM-as-judge) or code-based assertions.

As an example, consider a real estate CRM assistant. Suggesting showings that aren’t available
(can be tested with an assertion) or confusing client personas (can be tested with a LLM-as-
judge) is problematic . Generic metrics like similarity or verbosity won’t catch this. A relevant
quote from the course:

“The abuse of generic metrics is endemic. Many eval vendors promote off the shelf
metrics, which ensnare engineers into superfluous tasks.”

Similarity metrics aren’t always useless. They have utility in domains like search and recom-
mendation (and therefore can be useful for optimizing and debugging retrieval for RAG). For
example, cosine similarity between embeddings can measure semantic closeness in retrieval
systems, and average pairwise similarity can assess output diversity (where lower similarity
indicates higher diversity).

Focus view
Q: Can | use the same model for both the main task and evaluation?
For LLM-as-Judge selection, using the same model is usually fine because the judge is doing

a different task than your main LLM pipeline. The judges we recommend building do scoped
binary classification tasks. Focus on achieving high True Positive Rate (TPR) and True

15

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/should-i-use-ready-to-use-evaluation-metrics.html
../../../blog/posts/evals-faq/are-similarity-metrics-bertscore-rouge-etc-useful-for-evaluating-llm-outputs.html

AT Evals Course: 35% off at bit.ly/evals-ai

Negative Rate (TNR) with your judge on a held out labeled test set rather than avoiding the
same model family. You can use these metrics on the test set to understand how well your
judge is doing.

When selecting judge models, start with the most capable models available to establish strong
alignment with human judgments. You can optimize for cost later once you’ve established
reliable evaluation criteria. We do not recommend using the same model for open ended
preferences or response quality (but we don’t recommend building judges this way in the first
place!).

Focus view

Human Annotation & Process

Q: How many people should annotate my LLM outputs?

For most small to medium-sized companies, appointing a single domain expert as a “benevolent
dictator” is the most effective approach. This person—whether it’s a psychologist for a mental
health chatbot, a lawyer for legal document analysis, or a customer service director for support
automation—becomes the definitive voice on quality standards.

A single expert eliminates annotation conflicts and prevents the paralysis that comes from
“too many cooks in the kitchen”. The benevolent dictator can incorporate input and feedback
from others, but they drive the process. If you feel like you need five subject matter experts
to judge a single interaction, it’s a sign your product scope might be too broad.

However, larger organizations or those operating across multiple domains (like a multinational
company with different cultural contexts) may need multiple annotators. When you do use
multiple people, you’ll need to measure their agreement using metrics like Cohen’s Kappa,
which accounts for agreement beyond chance. However, use your judgment. Even in larger
companies, a single expert is often enough.

Start with a benevolent dictator whenever feasible. Only add complexity when your domain
demands it.

Focus view
Q: Should product managers and engineers collaborate on error analysis? How?
At the outset, collaborate to establish shared context. Engineers catch technical issues like

retrieval issues and tool errors. PMs identify product failures like unmet user expectations,
confusing responses, or missing features users expect.

16

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/can-i-use-the-same-model-for-both-the-main-task-and-evaluation.html
../../../blog/posts/evals-faq/how-many-people-should-annotate-my-llm-outputs.html

AT Evals Course: 35% off at bit.ly/evals-ai

As time goes on you should lean towards a benevolent dictator for error analysis: a domain
expert or PM who understands user needs. Empower domain experts to evaluate actual
outcomes rather than technical implementation. Ask “Has an appointment been made?” not
“Did the tool call succeed?” The best way to empower the domain expert is to give them
custom annotation tools that display system outcomes alongside traces. Show the confirmation,
generated email, or database update that validates goal completion. Keep all context on one
screen so non-technical reviewers focus on results.

Focus view

Q: Should | outsource annotation & labeling to a third party?

Outsourcing error analysis is usually a big mistake (with some exceptions). The core of eval-
uation is building the product intuition that only comes from systematically analyzing your
system’s failures. You should be extremely skeptical of this process being delegated.

The Dangers of Outsourcing

When you outsource annotation, you often break the feedback loop between observing a failure
and understanding how to improve the product. Problems with outsourcing include:

o Superficial Labeling: Even well-defined metrics require nuanced judgment that external
teams lack. A critical misstep in error analysis is excluding domain experts from the
labeling process. Outsourcing this task to those without domain expertise, like general
developers or IT staff, often leads to superficial or incorrect labeling.

e Loss of Unspoken Knowledge: A principal domain expert possesses tacit knowledge and
user understanding that cannot be fully captured in a rubric. Involving these experts
helps uncover their preferences and expectations, which they might not be able to fully
articulate upfront.

¢ Annotation Conflicts and Misalignment: Without a shared context, external annotators
can create more disagreement than they resolve. Achieving alignment is a challenge even
for internal teams, which means you will spend even more time on this process.

The Recommended Approach: Build Internal Capability

Instead of outsourcing, focus on building an efficient internal evaluation process.

1. Appoint a “Benevolent Dictator”. For most teams, the most effective strategy is to appoint
a single, internal domain expert as the final decision-maker on quality. This individual sets
the standard, ensures consistency, and develops a sense of ownership.

17

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/should-product-managers-and-engineers-collaborate-on-error-analysis-how.html

AT Evals Course: 35% off at bit.ly/evals-ai

2. Use a collaborative workflow for multiple annotators. If multiple annotators are necessary,
follow a structured process to ensure alignment: * Draft an initial rubric with clear Pass/Fail
definitions and examples. * Have each annotator label a shared set of traces independently
to surface differences in interpretation. * Measure Inter-Annotator Agreement (IAA) using
a chance-corrected metric like Cohen’s Kappa. * Facilitate alignment sessions to discuss dis-
agreements and refine the rubric. * Iterate on this process until agreement is consistently
high.

How to Handle Capacity Constraints

Building internal capacity does not mean you have to label every trace. Use these strategies
to manage the workload:

e Smart Sampling: Review a small, representative sample of traces thoroughly. It is
more effective to analyze 100 diverse traces to find patterns than to superficially label
thousands.

e The “Think-Aloud” Protocol: To make the most of limited expert time, use this
technique from usability testing. Ask an expert to verbalize their thought process
while reviewing a handful of traces. This method can uncover deep insights in a single
one-hour session.

¢ Build Lightweight Custom Tools: Build custom annotation tools to streamline the review
process, increasing throughput.

Exceptions for External Help

While outsourcing the core error analysis process is not recommended, there are some scenarios
where external help is appropriate:

e Purely Mechanical Tasks: For highly objective, unambiguous tasks like identifying a
phone number or validating an email address, external annotators can be used after a
rigorous internal process has defined the rubric.

o Tasks Without Product Context: Well-defined tasks that don’t require understanding
your product’s specific requirements can be outsourced. Translation is a good example:
it requires linguistic expertise but not deep product knowledge.

o Engaging Subject Matter Experts: Hiring external SMEs to act as your internal domain
experts is not outsourcing; it is bringing the necessary expertise into your evaluation
process. For example, AnkiHub hired 4th-year medical students to evaluate their RAG
systems for medical content rather than outsourcing to generic annotators.

18

https://bit.ly/evals-ai
https://www.ankihub.net/

AT Evals Course: 35% off at bit.ly/evals-ai

Focus view

Q: What parts of evals can be automated with LLMs?

LLMs can speed up parts of your eval workflow, but they can’t replace human judgment
where your expertise is essential. For example, if you let an LLM handle all of error analysis
(i.e., reviewing and annotating traces), you might overlook failure cases that matter for your
product. Suppose users keep mentioning “lag” in feedback, but the LLM lumps these under
generic “performance issues” instead of creating a “latency” category. You’d miss a recurring
complaint about slow response times and fail to prioritize a fix.

That said, LLMs are valuable tools for accelerating certain parts of the evaluation workflow
when used with oversight.

Here are some areas where LLMs can help:

o First-pass axial coding: After you've open coded 30-50 traces yourself, use an LLM
to organize your raw failure notes into proposed groupings. This helps you quickly spot
patterns, but always review and refine the clusters yourself. Note: If you aren’t familiar
with axial and open coding, see this faq.

e Mapping annotations to failure modes: Once you've defined failure categories,
you can ask an LLM to suggest which categories apply to each new trace (e.g., “Given
this annotation: [open_annotation] and these failure modes: [list_of failure_modes],
which apply?”).

¢ Suggesting prompt improvements: When you notice recurring problems, have
the LLM propose concrete changes to your prompts. Review these suggestions before
adopting any changes.

e Analyzing annotation data: Use LLMs or Al-powered notebooks to find patterns

in your labels, such as “reports of lag increase 3x during peak usage hours” or “slow
response times are mostly reported from users on mobile devices.”

However, you shouldn’t outsource these activities to an LLM:
o Initial open coding: Always read through the raw traces yourself at the start. This is

how you discover new types of failures, understand user pain points, and build intuition
about your data. Never skip this or delegate it.

19

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/should-i-outsource-annotation-and-labeling-to-a-third-party.html
why-is-error-analysis-so-important-in-llm-evals-and-how-is-it-performed.qmd
why-is-error-analysis-so-important-in-llm-evals-and-how-is-it-performed.qmd

AT Evals Course: 35% off at bit.ly/evals-ai

e Validating failure taxonomies: LLM-generated groupings need your review. For
example, an LLM might group both “app crashes after login” and “login takes too
long” under a single “login issues” category, even though one is a stability problem and
the other is a performance problem. Without your intervention, you’d miss that these
issues require different fixes.

e Ground truth labeling: For any data used for testing/validating LLM-as-Judge
evaluators, hand-validate each label. LLMs can make mistakes that lead to unreliable
benchmarks.

¢ Root cause analysis: LLMs may point out obvious issues, but only human review will
catch patterns like errors that occur in specific workflows or edge cases—such as bugs
that happen only when users paste data from Excel.

In conclusion, start by examining data manually to understand what’s actually going wrong.
Use LLMs to scale what you’ve learned, not to avoid looking at data.

Focus view

Q: Should | stop writing prompts manually in favor of automated tools?

Automating prompt engineering can be tempting, but you should be skeptical of tools that
promise to optimize prompts for you, especially in early stages of development. When you
write a prompt, you are forced to clarify your assumptions and externalize your requirements.
Good writing is good thinking 2. If you delegate this task to an automated tool too early, you
risk never fully understanding your own requirements or the model’s failure modes.

This is because automated prompt optimization typically hill-climb a predefined evaluation
metric. It can refine a prompt to perform better on known failures, but it cannot discover
new ones. Discovering new errors requires error analysis. Furthermore, research shows that
evaluation criteria tends to shift after reviewing a model’s outputs, a phenomenon known
as “criteria drift” 3. This means that evaluation is an iterative, human-driven sensemaking
process, not a static target that can be set once and handed off to an optimizer.

A pragmatic approach is to use LLMs to improve your prompt based on open coding (open-
ended notes about traces). This way, you maintain a human in the loop who is looking at the
data and externalizing their requirements. Once you have a high-quality set of evals, prompt
optimization can be effective for that last mile of performance.

Focus view

2Paul Graham, “Writes and Write-Nots”
3Shreya Shankar, et al., “Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs
with Human Preferences”

20

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/what-parts-of-evals-can-be-automated-with-llms.html
../../../blog/posts/evals-faq/should-i-stop-writing-prompts-manually-in-favor-of-automated-tools.html
https://paulgraham.com/writes.html
https://arxiv.org/abs/2404.12272
https://arxiv.org/abs/2404.12272

AT Evals Course: 35% off at bit.ly/evals-ai

Tools & Infrastructure

Q: Should | build a custom annotation tool or use something off-the-shelf?

Build a custom annotation tool. This is the single most impactful investment you can
make for your Al evaluation workflow. With Al-assisted development tools like Cursor or
Lovable, you can build a tailored interface in hours. I often find that teams with custom
annotation tools iterate ~10x faster.

Custom tools excel because:

e They show all your context from multiple systems in one place

o They can render your data in a product specific way (images, widgets, markdown, but-
tons, etc.)

o They’re designed for your specific workflow (custom filters, sorting, progress bars, etc.)

Off-the-shelf tools may be justified when you need to coordinate dozens of distributed annota-
tors with enterprise access controls. Even then, many teams find the configuration overhead
and limitations aren’t worth it.

Isaac’s Anki flashcard annotation app shows the power of custom tools—handling 400+ results
per query with keyboard navigation and domain-specific evaluation criteria that would be
nearly impossible to configure in a generic tool.

Focus view

Q: What makes a good custom interface for reviewing LLM outputs?

Great interfaces make human review fast, clear, and motivating. We recommend building
your own annotation tool customized to your domain. The following features are possible
enhancements we’ve seen work well, but you don’t need all of them. The screenshots shown
are illustrative examples to clarify concepts. In practice, I rarely implement all these features
in a single app. It’s ultimately a judgment call based on your specific needs and constraints.

1. Render Traces Intelligently, Not Generically:

Present the trace in a way that’s intuitive for the domain. If you’re evaluating generated
emails, render them to look like emails. If the output is code, use syntax highlighting. Allow
the reviewer to see the full trace (user input, tool calls, and LLM reasoning), but keep less
important details in collapsed sections that can be expanded. Here is an example of a custom
annotation tool for reviewing real estate assistant emails:

21

https://bit.ly/evals-ai
https://youtu.be/fA4pe9bE0LY
../../../blog/posts/evals-faq/should-i-build-a-custom-annotation-tool-or-use-something-off-the-shelf.html

AT Evals Course:

35% off at bit.ly/evals-ai

Email Grading Interface

Evaluate and improve Al-generated real estate outreach emails

2 Client Information

@ client

James & Marie Wilson

© Property Research & Market Details

Property Information v
Market Analysis v
Client Preferences ~

Primary contacts:

James Wilson: (555) 867-5309, james wilson@email.example, Works as a
software engineer at TechCorp

Marie Wilson: (555) 123-4567, marie.wilson@email.example, Works as a
pediatrician at City Hospital

They're available for property viewings mainly on weekends and
Wednesday evenings. Their lease expires in 3 months, so they're
motivated to find a suitable property within the next 6-8 weeks.

& Email for Grading

@ From: sarah.johnson@premierhomes.example

° Te james.wilson@email.example;

& To: - "
marie.wilson@email.example

. Custom Home Selection for the Wilson Family in
B Subject: B 4
Oakridge and Pinecrest

Dear James and Marie,

| hope this email finds you well. Following our conversation about
your housing needs, I've researched some excellent options in the
Oakridge and Pinecrest neighborhoods that match your
requirements for a 4+ bedroom home with office space in the
$750,000-850,000 range.

I've found three properties that | believe would be perfect for your
family:

- 145 Oakridge Lane: A stunning 4-bedroom, 3-bathroom home
built in 2018 with a dedicated office space and finished
basement. Listed at $825,000, this property features modern
finishes throughout and an open concept floor plan.

- 78 Pinecrest Avenue: A beautiful 5-bedroom, 3.5-bathroom
home built in 2015 with a flexible loft space that would make an
ideal office. At $799,000, it offers excellent value with its
oversized backyard and recent kitchen upgrades.

- 234 Maple Street (Oakridge): A spacious 4-bedroom home with
a private office suite on the main floor. built in 2017. Listed at

& Email Grading
@y Good Email P Bad Email

(3 Detailed Feedback

Figure 2: A custom interface for reviewing emails for a real estate assistant.

2. Show Progress and Support Keyboard Navigation:

Keep reviewers in a state of flow by minimizing friction and motivating completion. Include
progress indicators (e.g., “Trace 45 of 100”) to keep the review session bounded and encourage

completion. Enable hotkeys for navigating between traces (e.g., N for next), applying labels

I

and saving notes quickly. Below is an illustration of these features:

22

https://bit.ly/evals-ai

AT Evals Course: 35% off at bit.ly/evals-ai

LLM Output Review 75/100

Interface Reviewed

Trace #75 - Email Generation

User Query: "Find homes for my client S3 & Keyboard Shortcuts
North Berkeley preferred"

Next trace
Generated Email: Previous trace
"Dear Sarah, I've found 3 beautiful homes
. . Tag: Tone Mismatch
your criteria. The first property at 1234 04

views and is listed at $1.2M..." Tag: Hallucination

Defer judgment

» Show Full Trace Context Mark as Pass

Mark as Fail

Figure 3: An annotation interface with a progress bar and hotkey guide

3. Trace navigation through clustering, filtering, and search:

Allow reviewers to filter traces by metadata or search by keywords. Semantic search helps
find conceptually similar problems. Clustering similar traces (like grouping by user persona)
lets reviewers spot recurring issues and explore hypotheses. Below is an illustration of these
features:

23

https://bit.ly/evals-ai

AT Evals Course: 35% off at bit.ly/evals-ai

Individual Trace View Group Analysis View Pipeline Version: 1.0.5

Email Grading Analysis

Q search emails by client, subject, or content... Y All Emails v
2 Total Emails | Approval Rate ®© Avg. Review Time
36 76% 45s

Email Clusters
RE: Custom Home Selection for the ...

James & Marie Wilson D - 6/6/2023 Property-focused emails © MarkAl
Dear James and Marie, | hope this email finds you well.
Following our conversation about your housi... Approval Rate: 82% 17 emails

Missing Budget
d g View Emails

Custom Home Selection for the Wils...

James & Marie Wilson E - 7/7/2023
Dear James and Marie, | hope this email finds you well. Approval Rate: 75% 12 emails
Following our conversation about your housi...

Client-focused emails & MarkAl

Tone Mismatch View Emails
Custom Home Selection for the Wil... @\ Price negotiation emails 4 MarkAll
James & Marie Wilson F - 8/8/2023 Approval Rate: 60% 9 emails

Dear James and Marie, | hope this email finds you well.

Following our conversation about your housi... . .
View Emails

RE: Custom Home Selection for the ... J% Urgent timeline emails & MarkAll
James & Marie Wilson G - 9/9/2023
Dear James and Marie, | hope this email finds you well.

Fallaiinn aiie anmaraatian ahant e haai

Approval Rate: 88% 8 emails

Figure 4: Cluster view showing groups of emails, such as property-focused or client-focused
examples. Reviewers can drill into a group to see individual traces.

4. Prioritize labeling traces you think might be problematic:

Surface traces flagged by guardrails, CI failures, or automated evaluators for review. Provide
buttons to take actions like adding to datasets, filing bugs, or re-running pipeline tests. Dis-
play relevant context (pipeline version, eval scores, reviewer info) directly in the interface to
minimize context switching. Below is an illustration of these ideas:

24

https://bit.ly/evals-ai

AT Evals Course: 35% off at bit.ly/evals-ai

Trace Review Interface Pipeline v2.3.1

Trace #2847 J Save to Dataset Auto-Evaluator Results

Client Persona Match PASS
USER QUERY
Budget Compliance PASS
"I need to send an email to my investor client Marcus Chen about properties in Palo
Alto. He's looking for multi-family properties with good ROI potential, budget around Templating Issues FAIL

$3-4M."

GENERATED EMAIL .
Human Review

Subject: Exclusive Multi-Family Investment Opportunities in Palo Alto @ Reviewed by alex.wong

Dear Marcus, "Template structure is off - missing
proper closing and contact info
formatting."

I've identified several exceptional multi-family properties in Palo Alto that align with
your investment criteria. These properties offer strong ROI potential in the $3-4M

range: File Bug Re- View

generate Similar

1. 425 University Ave - 4-unit building, $3.2M, 5.2% cap rate

Figure 5: A trace view that allows you to quickly see auto-evaluator verdict, add traces to
dataset or open issues. Also shows metadata like pipeline version, reviewer info, and
more.

General Principle: Keep it minimal
Keep your annotation interface minimal. Only incorporate these ideas if they provide a benefit
that outweighs the additional complexity and maintenance overhead.

Focus view

Q: What gaps in eval tooling should | be prepared to fill myself?

Most eval tools handle the basics well: logging complete traces, tracking metrics, prompt
playgrounds, and annotation queues. These are table stakes. Here are four areas where you’ll
likely need to supplement existing tools.

Watch for vendors addressing these gaps: it’s a strong signal they understand practitioner
needs.

1. Error Analysis and Pattern Discovery
After reviewing traces where your Al fails, can your tooling automatically cluster similar issues?

For instance, if multiple traces show the assistant using casual language for luxury clients, you
need something that recognizes this broader “persona-tone mismatch” pattern. We recommend

25

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/what-makes-a-good-custom-interface-for-reviewing-llm-outputs.html

AT Evals Course: 35% off at bit.ly/evals-ai

building capabilities that use Al to suggest groupings, rewrite your observations into clearer
failure taxonomies, help find similar cases through semantic search, etc.

2. Al-Powered Assistance Throughout the Workflow

The most effective workflows use Al to accelerate every stage of evaluation. During error
analysis, you want an LLM helping categorize your open-ended observations into coherent
failure modes. For example, you might annotate several traces with notes like “wrong tone for
investor,” “too casual for luxury buyer,” etc. Your tooling should recognize these as the same
underlying pattern and suggest a unified “persona-tone mismatch” category.

You’ll also want Al assistance in proposing fixes. After identifying 20 cases where your as-
sistant omits pet policies from property summaries, can your workflow analyze these failures
and suggest specific prompt modifications? Can it draft refinements to your SQL generation
instructions when it notices patterns of missing WHERE clauses?

Additionally, good workflows help you conduct data analysis of your annotations and traces.
I like using notebooks with Al in-the-loop like Julius,Hex or Solvelt. These help me discover
insights like “location ambiguity errors spike 3x when users mention neighborhood names” or
“tone mismatches occur 80% more often in email generation than other modalities.”

3. Custom Evaluators Over Generic Metrics

Be prepared to build most of your evaluators from scratch. Generic metrics like “hallucination
score” or “helpfulness rating” rarely capture what actually matters for your application—
like proposing unavailable showing times or omitting budget constraints from emails. In our
experience, successful teams spend most of their effort on application-specific metrics.

4. APIs That Support Custom Annotation Apps

Custom annotation interfaces work best for most teams. This requires observability platforms
with thoughtful APIs. I often have to build my own libraries and abstractions just to make
bulk data export manageable. You shouldn’t have to paginate through thousands of requests
or handle timeout-prone endpoints just to get your data. Look for platforms that provide true
bulk export capabilities and, crucially, APIs that let you write annotations back efficiently.

Focus view

26

https://bit.ly/evals-ai
https://julius.ai/
https://hex.tech
https://solveit.fast.ai/
../../../blog/posts/evals-faq/what-gaps-in-eval-tooling-should-i-be-prepared-to-fill-myself.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: Seriously Hamel. Stop the bullshit. What'’s your favorite eval vendor?

Eval tools are in an intensely competitive space. It would be futile to compare their features.
If T tried to do such an analysis, it would be invalidated in a week! Vendors I encounter the
most organically in my work are: Langsmith, Arize and Braintrust.

When I help clients with vendor selection, the decision weighs heavily towards who can offer
the best support, as opposed to purely features. This changes depending on size of client, use
case, etc. Yes - it’s mainly the human factor that matters, and dare I say, vibes.

I have no favorite vendor. At the core, their features are very similar - and I often build custom
tools on top of them to fit my needs.

My suggestion is to explore the vendors and see which one you like the most.

Focus view

Production & Deployment

Q: How are evaluations used differently in CI/CD vs. monitoring production?

The most important difference between CI vs. production evaluation is the data used for
testing.

Test datasets for CI are small (in many cases 100+ examples) and purpose-built. Examples
cover core features, regression tests for past bugs, and known edge cases. Since CI tests are run
frequently, the cost of each test has to be carefully considered (that’s why you carefully curate
the dataset). Favor assertions or other deterministic checks over LLM-as-judge evaluators.

For evaluating production traffic, you can sample live traces and run evaluators against them
asynchronously. Since you usually lack reference outputs on production data, you might rely
more on on more expensive reference-free evaluators like LLM-as-judge. Additionally, track
confidence intervals for production metrics. If the lower bound crosses your threshold, investi-
gate further.

These two systems are complementary: when production monitoring reveals new failure pat-
terns through error analysis and evals, add representative examples to your CI dataset. This
mitigates regressions on new issues.

Focus view

27

https://bit.ly/evals-ai
https://www.langchain.com/langsmith
https://arize.com/
https://www.braintrust.dev/
https://hamel.dev/blog/posts/evals/#q-should-i-build-a-custom-annotation-tool-or-use-something-off-the-shelf
https://hamel.dev/blog/posts/evals/#q-should-i-build-a-custom-annotation-tool-or-use-something-off-the-shelf
../../../blog/posts/evals-faq/seriously-hamel-stop-the-bullshit-whats-your-favorite-eval-vendor.html
../../../blog/posts/evals-faq/how-are-evaluations-used-differently-in-cicd-vs-monitoring-production.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: What's the difference between guardrails & evaluators?

Guardrails are inline safety checks that sit directly in the request/response path. They
validate inputs or outputs before anything reaches a user, so they typically are:

¢ Fast and deterministic — typically a few milliseconds of latency budget.

e Simple and explainable — regexes, keyword block-lists, schema or type validators,
lightweight classifiers.

o Targeted at clear-cut, high-impact failures — PII leaks, profanity, disallowed in-
structions, SQL injection, malformed JSON, invalid code syntax, etc.

If a guardrail triggers, the system can redact, refuse, or regenerate the response. Because these
checks are user-visible when they fire, false positives are treated as production bugs; teams
version guardrail rules, log every trigger, and monitor rates to keep them conservative.

On the other hand, evaluators typically run after a response is produced. Evaluators measure
qualities that simple rules cannot, such as factual correctness, completeness, etc. Their verdicts
feed dashboards, regression tests, and model-improvement loops, but they do not block the
original answer.

Evaluators are usually run asynchronously or in batch to afford heavier computation such as
a LLM-as-a-Judge. Inline use of an LLM-as-Judge is possible only when the latency budget
and reliability targets allow it. Slow LLM judges might be feasible in a cascade that runs on
the minority of borderline cases.

Apply guardrails for immediate protection against objective failures requiring intervention.
Use evaluators for monitoring and improving subjective or nuanced criteria. Together, they
create layered protection.

Word of caution: Do not use llm guardrails off the shelf blindly. Always look at the prompt.

Focus view

Q: Can my evaluators also be used to automatically fix or correct outputs in
production?

Yes, but only a specific subset of them. This is the distinction between an evaluator and a
guardrail that we previously discussed. As a reminder:

e Evaluators typically run asynchronously after a response has been generated. They
measure quality but don’t interfere with the user’s immediate experience.

e Guardrails run synchronously in the critical path of the request, before the output is
shown to the user. Their job is to prevent high-impact failures in real-time.

28

https://bit.ly/evals-ai
https://hamel.dev/blog/posts/llm-judge/
https://hamel.dev/blog/posts/prompt/
../../../blog/posts/evals-faq/whats-the-difference-between-guardrails-evaluators.html

AT Evals Course: 35% off at bit.ly/evals-ai

There are two important decision criteria for deciding whether to use an evaluator as a
guardrail:

1. Latency & Cost: Can the evaluator run fast enough and cheaply enough in the critical
request path without degrading user experience?

2. Error Rate Trade-offs: What’s the cost-benefit balance between false positives (block-
ing good outputs and frustrating users) versus false negatives (letting bad outputs reach
users and causing harm)? In high-stakes domains like medical advice, false negatives
may be more costly than false positives. In creative applications, false positives that
block legitimate creativity may be more harmful than occasional quality issues.

Most guardrails are designed to be fast (to avoid harming user experience) and have a very
low false positive rate (to avoid blocking valid responses). For this reason, you would almost
never use a slow or non-deterministic LLM-as-Judge as a synchronous guardrail. However,
these tradeoffs might be different for your use case.

Focus view

Q: How much time should | spend on model selection?

Many developers fixate on model selection as the primary way to improve their LLM appli-
cations. Start with error analysis to understand your failure modes before considering model
switching. As Hamel noted in office hours, “I suggest not thinking of switching model as the
main axes of how to improve your system off the bat without evidence. Does error analysis
suggest that your model is the problem?”

Focus view

Domain-Specific Applications

Q: Is RAG dead?

Question: Should I avoid using RAG for my AI application after reading that “RAG is dead”
for coding agents?

Many developers are confused about when and how to use RAG after reading
articles claiming “RAG is dead.” Understanding what RAG actually means versus
the narrow marketing definitions will help you make better architectural decisions
for your Al applications.

29

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/can-my-evaluators-also-be-used-to-automatically-fix-or-correct-outputs-in-production.html
../../../blog/posts/evals-faq/how-much-time-should-i-spend-on-model-selection.html
https://pashpashpash.substack.com/p/why-i-no-longer-recommend-rag-for

AT Evals Course: 35% off at bit.ly/evals-ai

The viral article claiming RAG is dead specifically argues against using naive vector database
retrieval for autonomous coding agents, not RAG as a whole. This is a crucial distinction that
many developers miss due to misleading marketing.

RAG simply means Retrieval-Augmented Generation - using retrieval to provide relevant con-
text that improves your model’s output. The core principle remains essential: your LLM needs
the right context to generate accurate answers. The question isn’t whether to use retrieval,
but how to retrieve effectively.

For coding applications, naive vector similarity search often fails because code relationships
are complex and contextual. Instead of abandoning retrieval entirely, modern coding assistants
like Claude Code still uses retrieval —they just employ agentic search instead of relying solely
on vector databases, similar to how human developers work.

You have multiple retrieval strategies available, ranging from simple keyword matching to
embedding similarity to LLM-powered relevance filtering. The optimal approach depends on
your specific use case, data characteristics, and performance requirements. Many production
systems combine multiple strategies or use multi-hop retrieval guided by LLM agents.

Unfortunately, “RAG” has become a buzzword with no shared definition. Some people use
it to mean any retrieval system, others restrict it to vector databases. Focus on the ultimate
goal: getting your LLM the context it needs to succeed. Whether that’s through vector search,
agentic exploration, or hybrid approaches is a product and engineering decision.

Rather than following categorical advice to avoid or embrace RAG, experiment with different
retrieval approaches and measure what works best for your application. For more info on RAG
evaluation and optimization, see this series of posts.

Focus view

Q: How should | approach evaluating my RAG system?

RAG systems have two distinct components that require different evaluation approaches: re-
trieval and generation.

The retrieval component is a search problem. Evaluate it using traditional information retrieval
(IR) metrics. Common examples include Recall@k (of all relevant documents, how many
did you retrieve in the top k?), Precision@k (of the k documents retrieved, how many were
relevant?), or MRR (how high up was the first relevant document?). The specific metrics you
choose depend on your use case. These metrics are pure search metrics that measure whether
you're finding the right documents (more on this below).

To evaluate retrieval, create a dataset of queries paired with their relevant documents. Gen-
erate this synthetically by taking documents from your corpus, extracting key facts, then
generating questions those facts would answer. This reverse process gives you query-document
pairs for measuring retrieval performance without manual annotation.

30

https://bit.ly/evals-ai
https://x.com/pashmerepat/status/1926717705660375463?s=46
../../../notes/llm/rag/not_dead.html
../../../blog/posts/evals-faq/is-rag-dead.html

AT Evals Course: 35% off at bit.ly/evals-ai

For the generation component—how well the LLM uses retrieved context, whether it halluci-
nates, whether it answers the question—use the same evaluation procedures covered through-
out this course: error analysis to identify failure modes, collecting human labels, building
LLM-as-judge evaluators, and validating those judges against human annotations.

Jason Liu’s “There Are Only 6 RAG Evals” provides a framework that maps well to this
separation. His Tier 1 covers traditional IR metrics for retrieval. Tiers 2 and 3 evaluate
relationships between Question, Context, and Answer—Ilike whether the context is relevant
(C|Q), whether the answer is faithful to context (A|C), and whether the answer addresses the
question (A[Q).

In addition to Jason’s six evals, error analysis on your specific data may reveal domain-specific
failure modes that warrant their own metrics. For example, a medical RAG system might
consistently fail to distinguish between drug dosages for adults versus children, or a legal
RAG might confuse jurisdictional boundaries. These patterns emerge only through systematic
review of actual failures. Once identified, you can create targeted evaluators for these specific
issues beyond the general framework.

Finally, when implementing Jason’s Tier 2 and 3 metrics, don’t just use prompts off the shelf.
The standard LLM-as-judge process requires several steps: error analysis, prompt iteration,
creating labeled examples, and measuring your judge’s accuracy against human labels. Once
you know your judge’s True Positive and True Negative rates, you can correct its estimates
to determine the actual failure rate in your system. Skip this validation and your judges may
not reflect your actual quality criteria.

In summary, debug retrieval first using IR metrics, then tackle generation quality using prop-
erly validated LLM judges.

Focus view

Q: How do | choose the right chunk size for my document processing tasks?

Unlike RAG, where chunks are optimized for retrieval, document processing assumes the model
will see every chunk. The goal is to split text so the model can reason effectively without being
overwhelmed. Even if a document fits within the context window, it might be better to break
it up. Long inputs can degrade performance due to attention bottlenecks, especially in the
middle of the context. Two task types require different strategies:

1. Fixed-Output Tasks — Large Chunks

These are tasks where the output length doesn’t grow with input: extracting a number, an-
swering a specific question, classifying a section. For example:

e “What’s the penalty clause in this contract?”

31

https://bit.ly/evals-ai
https://jxnl.co/writing/2025/05/19/there-are-only-6-rag-evals/
../../../blog/posts/evals-faq/how-should-i-approach-evaluating-my-rag-system.html

AT Evals Course: 35% off at bit.ly/evals-ai

o “What was the CEQ’s salary in 20237”

Use the largest chunk (with caveats) that likely contains the answer. This reduces the number
of queries and avoids context fragmentation. However, avoid adding irrelevant text. Models are
sensitive to distraction, especially with large inputs. The middle parts of a long input might
be under-attended. Furthermore, if cost and latency are a bottleneck, you should consider
preprocessing or filtering the document (via keyword search or a lightweight retriever) to
isolate relevant sections before feeding a huge chunk.

2. Expansive-Output Tasks — Smaller Chunks

These include summarization, exhaustive extraction, or any task where output grows with
input. For example:

e “Summarize each section”
e “List all customer complaints”

In these cases, smaller chunks help preserve reasoning quality and output completeness. The
standard approach is to process each chunk independently, then aggregate results (e.g., map-
reduce). When sizing your chunks, try to respect content boundaries like paragraphs, sections,
or chapters. Chunking also helps mitigate output limits. By breaking the task into pieces,
each piece’s output can stay within limits.

General Guidance

It’s important to recognize why chunk size affects results. A larger chunk means the model
has to reason over more information in one go — essentially, a heavier cognitive load. LLMs
have limited capacity to retain and correlate details across a long text. If too much
is packed in, the model might prioritize certain parts (commonly the beginning or end) and
overlook or “forget” details in the middle. This can lead to overly coarse summaries or missed
facts. In contrast, a smaller chunk bounds the problem: the model can pay full attention to
that section. You are trading off global context for local focus.

No rule of thumb can perfectly determine the best chunk size for your use case — you should
validate with experiments. The optimal chunk size can vary by domain and model. I treat
chunk size as a hyperparameter to tune.

Focus view

32

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/how-do-i-choose-the-right-chunk-size-for-my-document-processing-tasks.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: How do | debug multi-turn conversation traces?

Start simple. Check if the whole conversation met the user’s goal with a pass/fail judgment.
Look at the entire trace and focus on the first upstream failure. Read the user-visible parts
first to understand if something went wrong. Only then dig into the technical details like tool
calls and intermediate steps.

Multi-agent trace logging

For multi-agent flows, assign a session or trace ID to each user request and log every message
with its source (which agent or tool), trace ID, and position in the sequence. This lets you
reconstruct the full path from initial query to final result across all agents.

Annotation strategy

Annotate only the first failure in the trace initially—don’t worry about downstream failures
since these often cascade from the first issue. Fixing upstream failures often resolves dependent
downstream failures automatically. As you gain experience, you can annotate independent
failure modes within the same trace to speed up overall error analysis.

Simplify when possible

When you find a failure, reproduce it with the simplest possible test case. Here’s an example:
suppose a shopping bot gives the wrong return policy on turn 4 of a conversation. Before
diving into the full multi-turn complexity, simplify it to a single turn: “What is the return
window for product X10007” If it still fails, you’ve proven the error isn’t about conversation
context - it’s likely a basic retrieval or knowledge issue you can debug more easily.

Test case generation

You have two main approaches. First, simulate users with another LLM to create realistic
multi-turn conversations. Second, use “N-1 testing” where you provide the first N-1 turns of
a real conversation and test what happens next. The N-1 approach often works better since it
uses actual conversation prefixes rather than fully synthetic interactions, but is less flexible.

The key is balancing thoroughness with efficiency. Not every multi-turn failure requires multi-
turn analysis.

Focus view

33

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/how-do-i-debug-multi-turn-conversation-traces.html

AT Evals Course: 35% off at bit.ly/evals-ai

Q: How do | evaluate sessions with human handoffs?

Capture the complete user journey in your traces, including human handoffs. The trace
continues until the user’s need is resolved or the session ends, not when AI hands off to a
human. Log the handoff decision, why it occurred, context transferred, wait time, human
actions, final resolution, and whether the human had sufficient context. Many failures occur
at handoff boundaries where Al hands off too early, too late, or without proper context.

Evaluate handoffs as potential failure modes during error analysis. Ask: Was the handoff
necessary? Did the Al provide adequate context? Track both handoff quality and handoff
rate. Sometimes the best improvement reduces handoffs entirely rather than improving handoff
execution.

Focus view

Q: How do | evaluate complex multi-step workflows?

Log the entire workflow from initial trigger to final business outcome. Include LLM calls, tool
usage, human approvals, and database writes in your traces. You will need this visibility to
properly diagnose failures.

Use both outcome and process metrics. Outcome metrics verify the final result meets require-
ments: Was the business case complete? Accurate? Properly formatted? Process metrics
evaluate efficiency: step count, time taken, resource usage. Process failures are often easier to
debug since they’re more deterministic, so tackle them first.

Segment your error analysis by workflow stages. Early stage failures (understanding user input)
differ from middle stage failures (data processing) and late stage failures (formatting output).
Early stage improvements have more impact since errors cascade in LLM chains.

Use transition failure matrices to analyze where workflows break. Create a matrix showing
the last successful state versus where the first failure occurred. This reveals failure hotspots
and guides where to invest debugging effort.

Focus view

Q: How do | evaluate agentic workflows?

We recommend evaluating agentic workflows in two phases:

1. End-to-end task success. Treat the agent as a black box and ask “did we meet the
user’s goal?”. Define a precise success rule per task (exact answer, correct side-effect, etc.)
and measure with human or aligned LLM judges. Take note of the first upstream failure when
conducting error analysis.

34

https://bit.ly/evals-ai
../../../blog/posts/evals-faq/how-do-i-evaluate-sessions-with-human-handoffs.html
../../../blog/posts/evals-faq/how-do-i-evaluate-complex-multi-step-workflows.html
https://hamel.dev/blog/posts/llm-judge/

AT Evals Course: 35% off at bit.ly/evals-ai

Once error analysis reveals which workflows fail most often, move to step-level diagnostics to
understand why they’re failing.

2. Step-level diagnostics. Assuming that you have sufficiently instrumented your system
with details of tool calls and responses, you can score individual components such as: - Tool
choice: was the selected tool appropriate? - Parameter extraction: were inputs complete and
well-formed? - Error handling: did the agent recover from empty results or API failures? -
Context retention: did it preserve earlier constraints? - Efficiency: how many steps, seconds,
and tokens were spent? - Goal checkpoints: for long workflows verify key milestones.

Example: “Find Berkeley homes under $1M and schedule viewings” breaks into: parameters
extracted correctly, relevant listings retrieved, availability checked, and calendar invites sent.
Each checkpoint can pass or fail independently, making debugging tractable.

Use transition failure matrices to understand error patterns. Create a matrix where
rows represent the last successful state and columns represent where the first failure occurred.
This is a great way to understand where the most failures occur.

Failure Occurred In State —

ParseReq IntentClass DecideTool GenSQL ExecSQL PlanCal ExecCal

ParseReq 0 3 0 0 0 0 0

o IntentClass 0 0 4 0 0 0 0

-

]

=)

wn DecideTool 0 0 0 6 0 2 0

£

2

i GenSQL 0 0 0 0 12 0 0
ExecSQL 0 0 0 0 0 5 0
PlanCal 0 0 0 0 0 0 7
ExecCal 0 0 0 0 0 0 0

Figure 6: Transition failure matrix showing hotspots in text-to-SQL agent workflow

Transition matrices transform overwhelming agent complexity into actionable insights. Instead
of drowning in individual trace reviews, you can immediately see that GenSQL — ExecSQL
transitions cause 12 failures while DecideTool — PlanCal causes only 2. This data-driven
approach guides where to invest debugging effort. Here is another example from Bryan Bischof,
that is also a text-to-SQL agent:

35

https://bit.ly/evals-ai
https://hamel.dev/blog/posts/evals/#logging-traces
https://www.figma.com/deck/nwRlh5renu4s4olaCsf9lG/Failure-is-a-Funnel?node-id=2009-927&t=GJlTtxQ8bLJaQ92A-1

AT Evals Course: 35% off at bit.ly/evals-ai

Experiment 1 Experiment 2

Badly failed to retrieve
required tables

1 3 1

Partially failed to o o
retrieve required tables

Bad table
hallucination

Partial table
hallucination

Badly incorrect 6 4t s Gom) 1 |21 6 3 6 23
table selection

Partially incorrect| 1 fos s 43 2 . 1 2
table selection

Columns 1 s 1 5 3 1 9 1 s 3
incorrect

Bad other agent 1 1 . 1 1 .
code error|

Partial other agent
de error

Badly incorrect 10 2 3 9 97 9 20 s 2 3 14 97 9|30
data

Partially incorrect 5 2 |l s e I
data

Pass 1 3 5|25 4 0 [14 | 25

S & o
¢ Eo &
E SR € ST S
el O EL FEL S8
Wt o SSE NS
S K

& &
s S S o o
ESE SE LS ¢

&

Figure 7: Bischof, Bryan “Failure is A Funnel - Data Council, 2025”

In this example, Bryan shows variation in transition matrices across experiments. How you
organize your transition matrix depends on the specifics of your application. For example,
Bryan’s text-to-SQL agent has an inherent sequential workflow which he exploits for further
analytical insight. You can watch his full talk for more details.

Creating Test Cases for Agent Failures

Creating test cases for agent failures follows the same principles as our previous FAQ on
debugging multi-turn conversation traces (i.e. try to reproduce the error in the simplest way
possible, only use multi-turn tests when the failure actually requires conversation context,
etc.).

Focus view

36

https://bit.ly/evals-ai
https://youtu.be/R_HnI9oTv3c?si=hRRhDiydHU5k6ikc
../../../blog/posts/evals-faq/how-do-i-evaluate-agentic-workflows.html

	Listen to the audio version of this FAQ
	Getting Started & Fundamentals
	Q: What are LLM Evals?
	Q: What is a trace?
	Q: What's a minimum viable evaluation setup?
	Q: How much of my development budget should I allocate to evals?
	Q: Will today's evaluation methods still be relevant in 5-10 years given how fast AI is changing?

	Error Analysis & Data Collection
	Q: Why is "error analysis" so important in LLM evals, and how is it performed?
	Q: How do I surface problematic traces for review beyond user feedback?
	Q: How often should I re-run error analysis on my production system?
	Q: What is the best approach for generating synthetic data?
	Q: Are there scenarios where synthetic data may not be reliable?
	Q: How do I approach evaluation when my system handles diverse user queries?
	Q: How can I efficiently sample production traces for review?

	Evaluation Design & Methodology
	Q: Why do you recommend binary (pass/fail) evaluations instead of 1-5 ratings (Likert scales)?
	Q: Should I practice eval-driven development?
	Q: Should I build automated evaluators for every failure mode I find?
	Q: Should I use "ready-to-use" evaluation metrics?
	Q: Are similarity metrics (BERTScore, ROUGE, etc.) useful for evaluating LLM outputs?
	Q: Can I use the same model for both the main task and evaluation?

	Human Annotation & Process
	Q: How many people should annotate my LLM outputs?
	Q: Should product managers and engineers collaborate on error analysis? How?
	Q: Should I outsource annotation & labeling to a third party?
	Q: What parts of evals can be automated with LLMs?
	Q: Should I stop writing prompts manually in favor of automated tools?

	Tools & Infrastructure
	Q: Should I build a custom annotation tool or use something off-the-shelf?
	Q: What makes a good custom interface for reviewing LLM outputs?
	Q: What gaps in eval tooling should I be prepared to fill myself?
	Q: Seriously Hamel. Stop the bullshit. What's your favorite eval vendor?

	Production & Deployment
	Q: How are evaluations used differently in CI/CD vs. monitoring production?
	Q: What's the difference between guardrails & evaluators?
	Q: Can my evaluators also be used to automatically fix or correct outputs in production?
	Q: How much time should I spend on model selection?

	Domain-Specific Applications
	Q: Is RAG dead?
	Q: How should I approach evaluating my RAG system?
	Q: How do I choose the right chunk size for my document processing tasks?
	Q: How do I debug multi-turn conversation traces?
	Q: How do I evaluate sessions with human handoffs?
	Q: How do I evaluate complex multi-step workflows?
	Q: How do I evaluate agentic workflows?

